Automatic cerebral hemisphere segmentation in rat MRI with lesions via attention-based convolutional neural networks

Juan Miguel Valverde, Artem Shatillo, Riccardo de Feo, Jussi Tohka

Why hemisphere segmentation?

The ratio $\frac{\text { contralateral hemisphere volume }}{\text { ipsilateral hemisphere volume }}$
is an important biomarker for acute stroke.

Region of interest

Source: https:/ /neuroscience-graphicdesign.com/2017/08/01/post-1-rat-brain-gallery/

MedicDeepLabv3+ (convolutional neural network)

Experiments

1. Comparison with eight other methods

VoxResNet, HighRes3DNet, V-Net, UNet, DeepLabv3+, Demon, RATS, RBET

Convolutional Neural Networks
2. Brain midline volume

Brain extraction

3. Hemispheric ratio

Are the hemispheric ratios in the ground truth significantly different from the automatic segmentations?

- Effect size (Cohen's d)
- Confidence interval

Results

1. Comparison

	Approach	Dice	HD	mase + 6	$\begin{gathered} \text { Neariceeplanasu+ } \end{gathered}$
$\begin{aligned} & \text { 罵 } \\ & \hline \end{aligned}$	MedicDeepLabv3+	$\mathbf{0 . 9 5 2} \pm 0.04$	$\mathbf{1 . 8 5 6} \pm \mathbf{0 . 9 1}$		
	VoxResNet	0.951 ± 0.04	2.042 ± 1.02		
	HighRes3DNet	0.949 ± 0.04	1.858 ± 1.04		
	V-Net	0.948 ± 0.04	1.920 ± 1.05		
	UNet (2D)	0.947 ± 0.05	3.477 ± 1.20		
	DeepLabv3+	0.936 ± 0.04	2.149 ± 1.02		
	Demon (2D)	0.934 ± 0.04	3.621 ± 1.17		
	RATS	0.913 ± 0.01	2.221 ± 0.51		
	RBET	0.781 ± 0.10	3.628 ± 0.46		
寻	MedicDeepLabv3+	0.944 ± 0.04	$\mathbf{2 . 0 6 4} \pm \mathbf{1 . 8 5}$		
	VoxResNet	0.944 ± 0.04	2.265 ± 1.86		
	HighRes3DNet	0.942 ± 0.04	2.205 ± 1.86		
	V-Net	0.940 ± 0.04	2.218 ± 1.86		
	UNet (2D)	0.941 ± 0.05	3.689 ± 1.64		
	DeepLabv3+	0.921 ± 0.04	2.411 ± 1.80		

2. Brain midline volume

- MedicDeepLabv3+ outperformed the baseline DeepLabv3+.
- UNet provided slightly higher (0.02) Dice coefficients.

3. Hemispheric ratio

Approach	Cohen's d	Confidence Interval
MedicDeepLabv3+	$\underline{0.008}$	$[-0.013,0.035]$
VoxResNet	-0.042	$[-0.060,-0.025]$
HighRes3DNet	-0.102	$[-0.125,-0.080]$
V-Net	0.003	$[-0.042,0.022]$
UNet	-0.038	$[-0.054,-0.021]$
DeepLabv3+	0.050	$[-0.008,0.099]$

Small d
Zero-centered C.I.

Discussion / Conclusion

> Our method provided excellent and more accurate segmentations than the other methods.
$>$ Our method takes one second to segment 3D volumes.
$>3 \mathrm{D}$ convolutional neural networks achieved better segmentations than 2D.

Acknowledgments

GENOMMED charles river

UNIVERSITY OF EASTERN FINLAND

A.I.VIRTANEN

I N S T I T U T E

The work of J.M. Valverde was funded from the European Union's Horizon 2020 Framework Programme (Marie Skłodowska Curie grant agreement \#740264 (GENOMMED)).
This work has also been supported by the grant \#316258 from Academy of Finland (J. Tohka) and grant S21770 from the European Social Fund (R. De Feo).
Part of the computational analysis was run on the servers provided by Bioinformatics Center, University of Eastern Finland, Finland.

