Antero Salminen

University of Eastern Finland / Neurology
Molecular Basis of Aging and Alzheimer’s Disease

Antero Salminen 

Research Director, Emeritus

University of Eastern Finland
Institute of Clinical Medicine / Neurology
P.O.Box 1627 (Yliopistonranta 1C)
FI-70211 Kuopio
Finland

+358-(0)50 574 07 40
antero.salminen (at) uef.fi

Major Positions and Appointments

  • Research Associate, Academy of Finland, 1982-85 
  • Junior Research Fellow, Academy of Finland, 1987-1990
  • Senior Research Fellow, Academy of Finland, 1992-1993
  • Professor of Cell Biology, University of Jyväskylä, 1993-95 
  • Research Director, University of Eastern Finland, 1995-2014
  • Research Director Emeritus, University of Eastern Finland, 2014- 
  • Visiting Scientist:
    • University of California, Berkeley, 1986-87 
    • National Cancer Institute, NIH, Bethesda, 1987-89
    • University of Hamburg, Medical School, Hamburg, 1990-92 
    • Baylor College of Medicine, Houston, 1993

Recent Review Articles

AGING PROCESS

Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res. Rev. 75, 101573, 2022. https://doi.org/10.1016/j.arr.2022.101573

Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J. Mol. Med. (Berlin), 99, 1553-1569, 2021. https://doi.org/10.1007/s00109-021-02123-w

Salminen A, Kaarniranta K, Kauppinen A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases. Inflamm. Res. 70, 1043-1061, 2021. https://doi.org/10.1007/s00011-021-01498-3

Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res. Rev. 67, 101280, 2021. https://doi.org/10.1016/j.arr.2021.101280

Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell. Signal. 75, 109771, 2020. https://doi.org/10.1016/j.cellsig.2020.109771

Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res. Rev. 57, 100998, 2020. https://doi.org/10.1016/j.arr.2019.100998

Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J. Mol. Med. (Berl) 97, 1049-1064, 2019. https://doi.org/10.1007/s00109-019-01795-9

Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell. Mol. Life Sci. 76, 1901-1918, 2019. https://doi.org/10.1007/s00018-019-03048-x

Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res. Rev. 48, 1-10, 2018. https://doi.org/10.1016/j.arr.2018.09.001

Salminen A, Kauppinen A, Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology 19, 325-339, 2018. https://doi.org/10.1007/s10522-018-9762-8

Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): impact on cancer and age-related chronic inflammatory disorders. Int. Immunopharmacol. 61, 231-240, 2018. https://doi.org/10.1016/j.intimp.2018.06.005

Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell. Signal. 40, 10-21, 2017. https://doi.org/10.1016/j.cellsig.2017.08.009

Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: interaction between energy metabolism and stress responses. Ageing Res. Rev. 37, 79–93, 2017. https://doi.org/10.1016/j.arr.2017.05.004

Salminen A., Kauppinen A., Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J. Mol. Med. (Berl) 95, 123-131, 2017. https://doi.org/10.1007/s00109-016-1477-1

Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res. Rev. 28, 15-26, 2016. https://doi.org/10.1016/j.arr.2016.04.003

Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-inducible histone lysine demethylases: impact on the aging process and age-related diseases. Aging Dis. 7, 180-200, 2016. https://doi.org/10.14336/AD.2015.0929

Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: impact on gene expression and epigenetic functions. Cell. Signal. 28, 887-895, 2016. https://doi.org/10.1016/j.cellsig.2016.03.009

Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 17, 655-680, 2016. https://doi.org/10.1007/s10522-016-9655-7

ALZHEIMER’S DISEASE

Salminen A, Kaarniranta K, Kauppinen A. Hypoxia/ischemia impairs CD33 (Siglec-3) /TREM2 signaling: Potential role in Alzheimer’s pathogenesis. Neurochem. Int. 150, 105186, 2021. https://doi.org/10.1016/j.neuint.2021.105186

Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer’s disease. Neurochem. Int. 142, 104919, 2021. https://doi.org/10.1016/j.neuint.2020.104919

Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer’s disease. J. Mol. Med. (Berl) 98, 633-650, 2020. https://doi.org/10.1007/s00109-020-01904-z

Salminen A, Kaarniranta K, Kauppinen A. The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer’s disease. Cell. Mol. Life Sci. 75, 3099-3120, 2018. https://doi.org/10.1007/s00018-018-2844-6

Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J. Neurochem. 140, 536-549, 2017. https://doi.org/10.1111/jnc.13932

Salminen A, Jouhten P, Sarajärvi T, Haapasalo A, Hiltunen M. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer’s disease. Neurochem. Int. 92, 13-24, 2016. https://doi.org/10.1016/j.neuint.2015.11.005

AGE-RELATED MACULAR DEGENERATION (AMD)

Kauppinen A, Kaarniranta K, Salminen A. Potential role of myeloid-derived suppressor cells (MDSCs) in age-related macular degeneration (AMD). Front. Immunol. 11, 384, 2020. https://doi.org/10.3389/fimmu.2020.00384

Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog. Retin. Eye Res. 79, 100858, 2020. https://doi.org/10.1016/j.preteyeres.2020.100858

Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The regulation of NFE2L2 (NRF2) signalling and epithelial-to-mesenchymal transition in age-related macular degeneration pathology. Int. J. Mol. Sci. 20, 5800, 2019. https://doi.org/10.3390/ijms20225800

Kaarniranta K, Koskela A, Felszeghy S, Kivinen N, Salminen A, Kauppinen A. Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration. Biochimie 159, 49-54, 2019. https://doi.org/10.1016/j.biochi.2018.07.010

Hyttinen JM, Blasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells: implications for age-related macular degeneration (AMD). Ageing Res. Rev. 36, 64-77, 2017. https://doi.org/10.1016/j.arr.2017.03.006

Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell. Mol. Life Sci. 73, 1765-1786, 2016. https://doi.org/10.1007/s00018-016-2147-8