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ABSTRACT 

 The dopaminergic system is involved in many behavioural and biological functions in 
the brain. The treatments for medical conditions such as schizophrenia, Parkinson’s disease, 
attention deficit hyperactivity disorder, restless legs syndrome and addiction are, at least, partly 
based on the drugs affecting the dopaminergic system. However, many neurochemical 
mechanisms that modulate the dopaminergic system are still unclear. The purpose of this study 
was to investigate the function of the brain dopaminergic system and its interaction with 
adrenergic and glutamatergic systems. 
 In vivo brain microdialysis was used to study the extracellular concentrations of 
dopamine (DA) and noradrenaline (NA). First, the effects of stressful stimuli, such as mild 
handling, novel environment and needle injection, on the modulation of DA and NA release 
were compared in neocortex, hippocampus, nucleus accumbens (NAc) and striatum in mice and 
rats. Second, the role of alpha2-adrenoceptor (α2-AR) subtypes in the regulation of DA and NA 
release in the medial prefrontal cortex (mPFC) and NAc was investigated by using α2A-AR 
knockout (KO) and wild type (WT) mice and α2-AR specific pharmacological tools. Third, the 
effects of a specific α2-AR agonist and antagonist were studied on the locomotor activity in α2-
AR KO and WT mice. Fourth, the effect of the non-competitive NMDA-antagonist, ketamine, 
was investigated on DA release in the retrosplenial cortex in rats. 
 Our results indicate that in vivo extracellular concentrations of DA in mouse brain 
reflect neuronal release and are sensitive to activation by unconditioned stimuli such as 
handling, novel environment and injection stress. The dopaminergic system showed regional 
differences in the response to the stressful stimuli in that mPFC, hippocampus and retrosplenial 
cortex were sensitive to mildly stressful stimuli, whereas striatum and NAc were unresponsive. 
However, a robust increase in the extracellular levels of NA was seen also in the striatum and 
NAc after exposure to stressful stimuli. Furthermore, the α2A-AR subtype appears to be the 
main regulator of both DA and NA release in the mPFC in response to stressful stimulation. 
However, both α2A- and α2C-ARs regulate DA release in the mPFC during rest. In contrast, α2A-
ARs regulate NA release, but not DA release, at the terminal level in NAc, although they 
influence DA release indirectly via ventral tegmental area DA neurons. Additionally, 
modulation of locomotor activity by the α2-AR agonist or the antagonist seems to be mediated 
via α2A-ARs. Finally, the NMDA-antagonist, ketamine, markedly increased the extracellular 
DA concentration in the retrosplenial cortex in rats.  
 In conclusion, adrenergic α2A-ARs and NMDA glutamate-receptors appear to be 
important regulators of DA neurotransmission in the mouse and rat brain 
 
 
National Library of Medicine Classification: QU 60, QY 60.R6, WK 725, WL 102.8, WM 172 
 
Medical Subject Headings: brain/drug effects; brain/metabolism; dopamine; mice, knockout; 
microdialysis; noradrenaline; receptors, adrenergic, alpha-2; receptors, N-Methyl-D-
Aspartate/antagonists and inhibitors; stress, psychological 
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1. INTRODUCTION 

The dopaminergic system is one of the most widely investigated neurotransmitter 

systems in the central nervous system (CNS) in both humans and experimental animals. 

The main interest in studies of dopamine (DA) neurotransmission has focused on the 

basal ganglia and prefrontal cortex (PFC), brain areas in which DA has a crucial role in 

both physiology and pathology. Several lines of evidence indicate that the dopaminergic 

system interacts with other neurotransmitter systems in the CNS, such as the adrenergic 

and glutamatergic systems. Indeed, the interaction sites of the dopaminergic and 

adrenergic systems comprise the overlap of their neuronal projections in the PFC and 

NAc (Taghzouti et al. 1988, Tassin 1992), heterosynaptic regulation of neurotransmitter 

release (Gobert et al. 1998, Trendelenburg et al. 1994), heterologous re-uptake sites via 

the same transporter (Carboni et al. 1990, Pozzi et al. 1994, Tanda et al. 1997) and even 

the release of two different neurotransmitters (e.g. DA and noradrenaline) from the 

same synapse (Devoto et al. 2001, Devoto et al. 2003, Devoto et al. 2004). 

 

In vivo microdialysis has been routinely performed in rodents since mid the 1980's. The 

majority of microdialysis studies have been done in rats. However, the availability of 

genetically modified mouse strains has greatly increased the number of in vivo 

microdialysis studies in mice. For example, in many cases the lack of subtype selective 

agonists and antagonists has restricted the possibility to the study the function of 

neurotransmitter receptors in the CNS. Thus, the mouse models with targeted 

inactivation or overexpression of certain receptor protein have provided valuable 

information about how receptors function. In addition, the microdialysis technique has 

offered the possibility to administer drugs through the microdialysis cannula, so called 

reverse dialysis, to a discrete brain area, and to study the function of neurotransmitter 

systems locally in the brain in awake animals.  

 

The present series of experiments combined the in vivo microdialysis method with 

pharmacological interventions in mice deficient for the alpha2A-adrenoceptor (α2A-AR) 

subtype to investigate the dopaminergic and noradrenergic neurotransmission in the 

medial prefrontal cortex (mPFC) and NAc in awake mice. The lack of subtype selective 
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α2-agonists or -antagonists has made it difficult to study the role of different α2-AR 

subtypes in the CNS. Thus the mouse model with targeted inactivation of the α2-AR 

gene and the corresponding lack of functional α2-AR protein could provide valuable 

information on the role of different α2-AR subtypes in the regulation of DA and 

noradrenaline (NA) release in the CNS.  

 

The interaction between the glutamatergic and dopaminergic systems is currently under 

active investigation in the context of the neurobiology of psychosis. Experimental 

studies indicate that NMDA-receptor antagonists induce a reversible neurotoxic reaction 

in the retrosplenial cortex (Olney et al. 1989) and that a dopaminergic mechanism might 

also be involved (Farber et al. 1993). Previous research has been mainly restricted to the 

basal ganglia in man and to the PFC in animals, despite the evidence for a more 

widespread DA innervation in the cortex (Descarries et al. 1987, Gaspar et al. 1989). 

Therefore the effect of the non-competitive glutamate NMDA-receptor antagonist, 

ketamine, was studied on DA release in the retrosplenial cortex in rats. Furthermore, 

alterations in DA and NA neurotransmission in response to arousal stimuli were studied 

in the mPFC, retrosplenial cortex, hippocampus, NAc and striatum.  

 



17 

2. REVIEW OF THE LITERATURE 

2.1. THE BRAIN DOPAMINERGIC SYSTEM 

2.1.1. Dopamine as a neurotransmitter 

Dopamine (3,4-dihydroxyphenylethylamine) was found to be a neurotransmitter in 1958 

(Benes 2001, Carlsson and Waldeck 1958, Carlsson 2001). Before this finding, DA was 

assumed to be simply a precursor of noradrenaline. During the following decades, 

knowledge of the role of DA in neurotransmission increased enormously and it was 

linked to many biological functions and neurological disorders in the central nervous 

system. DA in the brain has an important role in many behavioural and biological 

functions, such as motivation and reward (Bassareo et al. 2002, Berridge and Robinson 

1998, Olds and Milner 1954, Robbins and Everitt 1996, Salamone et al. 2005, Wise and 

Rompre 1989); learning (Ljungberg et al. 1992, Schultz et al. 1993); memory (Arnsten 

1997, Setlow and McGaugh 1998); feeding (Bassareo and Di Chiara 1999a, Hernandez 

and Hoebel 1988a, Hernandez and Hoebel 1988b); vision (Djamgoz and Wagner 1992, 

Ehinger 1983, Nguyen-Legros 1988); lactation (Ben-Jonathan and Hnasko 2001, 

Thorner 1977); nausea and vomiting (Yoshida et al. 1995, Yoshikawa et al. 1996); 

stress (Abercrombie et al. 1989, Imperato et al. 1993); sexual behaviour (Giuliano and 

Allard 2001, Melis and Argiolas 1995, Pfaus and Phillips 1991); and control of 

locomotor activity (Damsma et al. 1992, Fink and Smith 1980). The crucial role of DA 

in different biological functions has made it an interesting target for drug development. 

Indeed, there are treatments for medical conditions that are, at least, partly caused by a 

failure in dopaminergic system such as schizophrenia, Parkinson’s disease, attention 

deficit hyperactivity disorder, restless legs syndrome and addiction (Bloom and 

Lazerson 1988, Nieoullon 2002, Nutt 1996, Self and Nestler 1995, Trenkwalder et al. 

2005). 

 

2.1.2. Dopaminergic innervation of forebrain structures 

The cell bodies of the neurons forming the major ascending dopaminergic pathways to 

forebrain arise from the ventral tegmental area (VTA, A10 region) and substantia nigra 

pars compacta (A9 region) (Albanese and Minciacchi 1983, Björklund and Lindvall 
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1984, Fuxe et al. 1985). The nigrostriatal (or mesostriatal) DA system originates from 

substantia nigra pars compacta and innervates mainly the caudate and putamen. A minor 

proportion of substantia nigra pars compacta DA neurons innervate the NAc. The 

dopaminergic fibers from the VTA to NAc, olfactory tubercle and other limbic regions 

such as the amygdala, hippocampus and septum comprise the mesolimbic DA system 

and VTA fibers to cortical regions, such as the prefrontal cortex (densest dopaminergic 

innervation in infralimbic and prelimbic regions), entorhinal cortex and cingulate cortex 

comprise the mesocortical DA system (Thierry et al 1973; Berger et al 1974). The third 

major dopaminergic pathway is the tuberoinfundibular pathway that projects from the 

median eminence (A12 region) to the pituitary gland and is involved in the control of 

the secretion of prolactin levels. The dopaminergic cell bodies are also found in the 

retina and olfactory bulb.  

 

In primates, motor, premotor and supplementary motor areas are densely innervated 

with DA fibers, whereas parietal, temporal and posterior cingulate cortices have a less 

extensive dopaminergic input. The prefrontal, anterior cingulate, insular, piriform, 

perirhinal and entorhinal cortices are densely innervated, while visual areas are only 

sparsely innervated in both rodents and primates (Berger et al. 1985a, Berger et al. 

1988, Lewis et al. 1987, Parnavelas and Papadopoulos 1989). In rodents, dopaminergic 

neurons projecting to the cerebral cortex are differentiated into two main classes. The 

first group of dopaminergic fibers originates from medial VTA and is distributed mainly 

to the deep cortical layers, V-VI or VI (Berger et al. 1991, Emson and Koob 1978, 

Lindvall et al. 1984). The second class of dopaminergic neurons originates from lateral 

VTA and medial substantia nigra and distributes to the superficial cortical layers, I-III, 

especially to the cingulate cortex (Berger et al. 1985a, Berger et al. 1985b, Descarries et 

al. 1987). Both classes of dopaminergic neurons exhibit a clear rostro-caudal gradient 

with a higher density in the PFC and a lower density in the posterior cortex. This 

contrasts with cortical noradrenergic innervation, which is evenly distributed throughout 

the cortex (fig. 1) (Lindvall et al. 1978, Seguela et al. 1990). On the other hand, the 

laminar distribution of cortical dopaminergic projections is more evenly distributed in 

primates compared to rodents, with the densest distribution being in layers I, III and V 

(Goldman-Rakic et al. 1990, Goldman-Rakic et al. 1992).  
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A. 

 
B. 

 
Fig 1. The dopaminergic (A) and noradrenergic (B) innervation in the rat brain. 

Abbreviations: CC = cerebral cortex; CPu = caudate-putamen; CRB = cerebellum; 

HIPP = hippocampus; LC = locus coeruleus; NAc = nucleus accumbens; SN = 

substantia nigra; TC = tectum; TH = thalamus; VTA = ventral tegmental area. 

 

2.1.3. Metabolism of dopamine  

2.1.3.1. Synthesis  

DA is synthesised from its amino acid precursor tyrosine, which is abundant in dietary 

proteins. Tyrosine penetrates through blood-brain-barrier via the low-affinity amino 

acid transporter system and from brain extracellular fluid into the dopaminergic cells by 

high and low affinity amino acid transporters. In the nerve cells, tyrosine is first 
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hydroxylated by tyrosine hydroxylase to dihydroxyphenylalanine (L-DOPA). This 

enzymatic reaction is normally the rate-limiting step in DA synthesis (Feldman et al. 

1997). Tyrosine hydroxylase requires tetrahydrobiopterin as a cofactor for the 

biosynthesis of L-DOPA. Aromatic amino acid decarboxylase (AADC or DOPA 

decarboxylase) is the enzyme that converts L-DOPA to DA in the cytosol. In the 

noradrenergic cells, DA is further converted by dopamine β-hydroxylase to NA inside 

the synaptic vesicles. 

 

2.1.3.2. Storage and release 

e end product, DA, is transported into the storage vesicles In the dopaminergic cells, th

and is concentrated approximately 10-1000 times compared to the DA levels in the 

cytosol (Johnson 1988, Kanner and Schuldiner 1987, Njus et al. 1986). Accumulation of 

DA in the storage vesicles depends on the proton electrochemical gradient generated by 

the vesicular hydrogen-ATPase and involves the vesicular monoamine transporter 

mediated exchange of two luminal protons with one cytoplasmic amine. In addition to 

storage in axon terminals, DA can be released also from dendrites (Björklund and 

Lindvall 1975, Kalivas et al. 1989, Nieoullon et al. 1977b, Santiago and Westerink 

1991). There DA is stored both in vesicles but also in the smooth endoplasmic reticulum 

(Hattori et al. 1979, Mercer et al. 1979). The arrival of the axon potential to the nerve 

terminal evokes the passage of calcium ions into the cell and this is the key element for 

the fusion of storage vesicles with the cell membrane. The synaptic vesicles release their 

soluble content into the synaptic cleft by exocytosis (Hanson et al. 1997, Matsuda et al. 

1994). DA release is dependent on the nerve stimulus rate and pattern. Indeed, an 

increase in DA cell activity is typically accompanied by a shift from an irregular single-

spiking pattern to one of burst firing (Tong et al. 1996; Carr et al. 1999). Stimulation 

studies have shown that activation of the DA neuron axon in patterns resembling burst 

discharge will release two to three times more DA than is released by an equivalent 

number of evenly spaced stimuli (Bonci et al. 1997).  
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2.1.3.3. Uptake  

The presynaptic dopaminergic terminals contain a transporter (DAT) that is responsible 

for the homeostasis and which terminates the action of the neurotransmitter. These high-

affinity membrane carriers work in both directions depending on the concentration 

gradient. Under normal conditions, the concentration of DA is lower in the cytosol than 

in the synaptic cleft, and DA is recycled back to the storage vesicles. Some drugs such 

as tricyclic antidepressants and cocaine can inhibit the action of DAT and in that way 

increase the extracellular levels of DA (Giros and Caron 1993, Kuhar et al. 1991, 

Randrup and Braestrup 1977, Ritz et al. 1987). On the other hand, amphetamine 

reverses the function of DAT, transporting DA to the synaptic cleft from the cytosol 

(Fischer and Cho 1979, Heikkilä et al. 1975, Jones et al. 1998, Raiteri et al. 1979, 

Schmitz et al. 2001, Sulzer et al. 1995). It has also been assumed that other neurons and 

glial cells can participate in the removal of DA from the extracellular fluid. Indeed, in 

the PFC NA transporter (NET) has a prominent role in the uptake of DA from the 

extracellular space (Gresch et al. 1995, Mazei et al. 2002, Valentini et al. 2004, 

Yamamoto and Novotney 1998), whereas in the striatum DAT is mainly responsible for 

the clearance of DA from the extracellular space (Gresch et al. 1995, Mazei et al. 2002).  

 

 
Fig. 2. The dopaminergic synapse. Abbrevitations: AADC = aromatic amino acid 

decarboxylase; COMT = catechol-O-methyltransferase; D1R/D2R = dopamine D1/D2 
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receptor; DAT = dopamine transporter; DOPAC = dihydroxyphenylacetic acid; MAO = 

monoamine oxidase; DA = dopamine; TH = tyrosine hydroxylase. 

 

2.1.3.4. Degradation 

The two main enzymes that take care of DA clearance are monoamine oxidase (MAO) 

and catechol-O-methyltransferase (COMT). MAO is located in the nerve cells and also 

in the glial cells, whereas COMT is found mainly extraneuronally (Kopin 1994). MAO 

is located on the outer membrane of the mitochondrion. It metabolises DA by oxidative 

deamination to aldehyde 3,4-dihydroxyphenylacetic acid that is further metabolised to 

alcohols and acids. There are two isoenzymes of MAO: MAO A and MAO B. MAO A 

preferentially metabolizes serotonin and NA while MAO B has a higher affinity for 

phenylethylamine (Fowler and Tipton 1982, Fowler and Benedetti 1983). Both isoforms 

can metabolize DA. In the mouse, DA is largely metabolized by MAO A under normal 

physiological conditions, though at higher concentrations the contribution of MAO B 

also becomes significant (Fornai et al. 1999). In contrast, in humans, DA is mainly 

oxidized by MAO B (Glover et al. 1977). Both lesion (Kaakkola et al. 1987, Rivett et al. 

1983) and immunohistochemical studies (Karhunen et al. 1995, Lundstrom et al. 1995) 

have demonstrated that there is no significant COMT activity in presynaptic 

dopaminergic neurons, but some activity is present in postsynaptic neurons and 

substantial activity is located in glial cells. COMT inactivates DA by methylation of 

hydroxyls on the catechol ring. COMT is able to methylate DA itself or metabolites that 

have been first produced by MAO. The two main metabolites of DA are homovanillic 

acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC). HVA is a methylated 

compound that is produced by both MAO and COMT. DOPAC is an un-methylated 

metabolite and it is produced only by MAO (fig. 3). 
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Fig. 3. Metabolism of dopamine. Abbreviations: DOPA = 3,4-dihydroxyphenylalanine; 

DA = dopamine; DOPAC = 3,4-dihydroxyphenylacetic acid; HVA = homovanillic acid; 

3-MT = 3-methoxytyramine; MAO = monoamine oxidase; COMT = catechol-O-

methyltransferase; AD = aldehydedehydrogenase. 

 

2.1.4. Dopamine receptors 

All DA receptors belong to the G-protein coupled receptor (GPCR) superfamily. The 

dopaminergic receptors can be divided into D1- and D2-like receptors. D1-like 

receptors consist of D1 and D5 receptors, and D2-like receptors of D2, D3 and D4 

receptors (Jackson and Westlind-Danielsson 1994). This classification is based on the 

mechanisms that link these GPCRs to the second messenger system. Thus D1-like 

receptors stimulate the adenylate cyclase activity via Gs subunit leading to an increased 

cAMP (cyclic adenosine monophosphate) concentration (Kebabian and Calne 1979, 

Missale et al. 1998). On the other hand, D2-like receptors are negatively coupled via the 

Gi subunit to the adenylate cyclase, which leads to a decline in the cAMP concentration 

(Vallar et al. 1988). Structurally all GPCRs consist of seven transmembrane domains 

that are connected with three extra- and three intracellular loops (Bockaert et al. 2002).  

 

The D1 receptor is the most widespread DA receptor and is expressed at a higher level 

than the other DA receptor subtypes (Dearry et al. 1990, Fremeau et al. 1991, Lidow et 
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al. 1990, Weiner et al. 1991). The D5 receptor is expressed at a much lower level than 

the D1 receptor, with a distribution restricted mainly to the hippocampus and the 

parafascicular nucleus of the thalamus (Meador-Woodruff et al. 1992, Tiberi et al. 

1991). The D2 receptor is also widely distributed in the brain, with the highest densities 

in the striatum, NAc and olfactory tubercle. The D2 receptor gene encodes two 

molecularly distinct isoforms, named long (D2L) and short (D2S) (Picetti et al. 1997). 

The D2L mainly acts at postsynaptic sites and the D2S serves presynaptic autoreceptor 

functions (Usiello et al. 2000). The D3 receptor is specifically distributed in limbic 

areas such as the shell of the NAc, olfactory tubercle and islands of Calleja, but has a 

low expression in the striatum (Bouthenet et al. 1991, Sokoloff et al. 1990). The D4 

receptor is highly expressed in the frontal cortex, amygdala, hippocampus, 

hypothalamus and mesencephalon (O'Malley et al. 1992, Van Tol et al. 1991). The 

relative abundance of the DA receptors in the rat central nervous system has been 

claimed to be D1>D2>D3>D5>D4 (Jaber et al. 1996).  

 

Table 1. Distribution of DA receptors in the brain (Jaber et al. 1996, Missale et al. 

1998). Abbreviations: OT = olfactory tubercle; MN = mamillary nucleus; CC = cerebral 

cortex; SR = septal region; SN = substantia nigra; VTA = ventral tegmental area; NAc = 

nucleus accumbens; FC = frontal cortex. 

 
DA receptor 
subtype 

Function Brain region 
(high expression) 

D1 stimulate adenylate cyclase via 
Gs 

striatum, NAc, OT, 
hypothalamus, thalamus, limbic 
system 

D5 stimulate adenylate cyclase via 
Gs 

hippocampus, thalamus, MN,  
CC, striatum, hippocampus, SN 

D2 negative coupling via Gi to 
adenylyl cyclase 

striatum, NAc, OT, CC, SR, 
amygdala, hippocampus 
hypothalamus, SN, VTA 

D3 negative coupling via Gi to 
adenylyl cyclase 

limbic region (NAc, OT), SN, 
VTA, hippocampus 

D4 negative coupling via Gi to 
adenylyl cyclase 

FC, amygdala, hippocampus 
hypothalamus, mesencephalon, 
SN, thalamus 
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The unavailability of subtype selective DA receptor ligands has hampered the study of 

DA receptor functions in the CNS. There are both agonists and antagonists that can 

discriminate between D1-like and D2-like receptors but relatively few agents are 

selective for DA receptor subtypes within the subfamilies. The D1 ligands have no more 

than 10-fold greater selectivity for D1- vs. D5 receptors (Bourne 2001, Neumeyer et al. 

2003, Shiosaki et al. 1996, Tice et al. 1994). However, there are D2 ligands that can 

differentiate more selectively between D2-like receptor subtypes. Indeed, there exist 

antagonists for the D4 receptor subtype having up to 1000-fold greater sensitivity for 

D4 vs. D2 or D3 receptors (Kula et al. 1997, Kulagowski et al. 1996, Patel et al. 1996). 

Moreover, there are still no D2 receptor selective agonists and antagonists available. In 

recent years, mouse lines have been generated that have a targeted inactivation of the 

receptor protein for all five DA receptor subtypes. These animals have helped to unravel 

the function of the individual DA receptors in the CNS. 

 

Studies in D1 receptor KO (knockout) mice have shown that the D1 receptor is essential 

for locomotor activating effects of psychostimulants (Drago et al. 1998, Xu et al. 1994). 

However, the D1 receptors do not affect the rewarding and reinforcing effects of 

cocaine (Miner et al. 1995). Also, the D1 receptor was found to play a role in the 

motivation to work for food reward but not in reward perception. (El-Ghundi et al. 

2003). Cortical D1 receptors have also been implicated in the control of working 

memory (Sawaguchi and Goldman-Rakic 1991) and have an important role in 

modulating the extinction of fear memory (El-Ghundi et al. 2001). 

 

Rouge-Pont et al. (2002) found that the lack of the D2 receptor produced higher 

extracellular DA levels in response to morphine and cocaine administration, indicating a 

key role of D2 receptor in the modulation of DA release in drug abuse. In the same 

study, the neurochemical effects of morphine and cocaine were unchanged in mice with 

selective deletion of the long isoform of D2L receptor, in support of role of the D2S 

isoform in mediating the presynaptic autoreceptor function. Interestingly, the D2L 

receptor seems to mediate parkinsonian-like syndromes induced by typical 

antipsychotic drugs in D2L KO mice (Xu et al. 2002). On the other hand, the 

amphetamine-induced disruption of sensorimotor gating phenomenon, known as 
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prepulse inhibition of startle reflex induced by loud sound, is mediated via the D2 

receptors (Ralph et al. 1999). In addition, Xu et al. (2002) reported that amphetamine 

and the antipsychotic drug clozapine mediate their effect on prepulse inhibition via the 

D2S isoform. The D3 receptor has been found to play an inhibitory role in the control of 

locomotor activity and rearing behaviour (Accili et al. 1996). Like the D1 receptor, the 

D4 receptor has been implicated in drug abuse, since in mice lacking the D4 receptor 

exhibited supersensitivity to the locomotor stimulating effects of methamphetamine and 

cocaine (Rubinstein et al. 1997). Studies in D5 receptor KO mice have revealed a 

modulatory role for the D5 receptor in acetylcholine release in the hippocampus 

(Laplante et al. 2004) and the regulation of sexual behaviour both in males and females 

(Kudwa et al. 2005).  

 

2.1.5. Presynaptic regulation of dopaminergic neurotransmission  

There are several mechanisms by which DA transmission is regulated presynaptically in 

the CNS. These include DA reuptake by DAT, inhibition of DA synthesis and release 

by presynaptic D2-like autoreceptors, degradation of released DA by metabolizing 

enzymes and heterosynaptic regulation of DA release by other neurotransmitter 

systems. 

 

2.1.5.1. Dopamine transporter 

Dopaminergic neurons exhibit both single spike and burst firing modes of activity, the 

latter yielding much higher extracellular DA levels. The elevated DA levels in the 

extracellular space after burst stimulation are more likely to be a result of saturated DA 

reuptake sites rather than facilitated DA release from the presynaptic terminal (Chergui 

et al. 1994). Namely, during tonic activity, DA released by single spikes is cleared from 

the synaptic cleft before the next pulse, but during burst stimulation DA accumulates in 

the synaptic cleft. This accumulation is more pronounced in brain areas other than 

dorsal striatum, which is dense with DAT (Chergui et al. 1994, Suaud-Chagny et al. 

1995). Extracellular accumulation of DA by burst activity is also needed to activate D2 

autoreceptors (Benoit-Marand et al. 2001) and postsynaptic D1 receptors (Chergui et al. 

1996, Chergui et al. 1997, Gonon 1997). Thus, tonic and bursting activities result in 
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different extracellular DA levels due to DA reuptake mechanism. On the other hand, 

studies in DAT KO mice point to a key role of DAT in the refilling of intracellular DA 

stores after prolonged DA release (Gainetdinov et al. 1998). 

 

2.1.5.2. D2-autoreceptors 

Several studies in D2 KO mice have indicated that the D2 receptor is the only functional 

autoreceptor (Benoit-Marand et al. 2001, Mercuri et al. 1997, Schmitz et al. 2002). 

However, some studies suggest that also D3 receptors might have an autoreceptor 

function (Kuzhikandathil and Oxford 1999, Kuzhikandathil and Oxford 2000, O'Hara et 

al. 1996, Tang et al. 1994). The D2 autoreceptor activation inhibits axon terminal 

(Cragg and Greenfield 1997, Dwoskin and Zahniser 1986, Mayer et al. 1988, Palij et al. 

1990, Starke et al. 1978) and somatodendritic (Cragg and Greenfield 1997) DA release. 

There is also evidence that D2 receptors modulate DA synthesis by decreasing tyrosine 

hydroxylase activity (Kehr et al. 1972, Roth et al. 1975, Strait and Kuczenski 1986, 

Wolf et al. 1986). This action is probably mediated via inhibition of adenylyl cyclase 

and a cAMP-dependent change in phosphorylation of tyrosine hydroxylase (Lindgren et 

al. 2001, Onali and Olianas 1989). Studies in pheochromocytoma 12 cell cultures 

indicate that D2 autoreceptors regulate DA release on two different time scales (Pothos 

et al. 1998), through a fast mechanism that lasts for a few seconds and modulates ion 

channels and through a slow one that lasts for minutes to hours and involves regulation 

of DA synthesis. On the other hand, the D2 receptors on the soma and dendrites of the 

neuron inhibit impulse flow by activating G protein coupled inwardly rectifying 

potassium channels. This effect hyperpolarises the cell membrane (Lacey 1993, White 

1996). D2 autoreceptors may also participate in the regulation of intracellular vesicular 

transporter and modulate DA reuptake from the extracellular space (Meiergerd et al. 

1993, Parsons et al. 1993, Schmitz et al. 2002, Wu et al. 2002). Indeed, D2 receptor 

agonists can increase vesicular DA uptake and D2 receptor antagonists block increase of 

vesicular DA uptake induced by cocaine (Brown et al. 2001). These studies indicate that 

DAT activity is increased by the D2 receptor agonist quinpirole and decreased by the 

D2 receptor antagonists pimozide, sulpiride and raclopride. Interestingly, the lack of the 

D2 receptor in the mutant mouse line altered striatal DAT activity but did not affect DA 

release (Brown et al. 2001). On the other hand, chronic treatment with D2 receptor 
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agonists is reported to increase DAT expression in the NAc and decrease DAT 

expression in the striatum (Kimmel et al. 2001). Also, altered DAT levels have been 

observed in schizophrenic patients and this may be attributable to the antipsychotic drug 

treatment (Laakso et al. 2001). However, the exact mechanisms and conditions how D2 

autoreceptors regulate the functions of DAT are still unclear.  

 

2.1.5.3. Degradation 

In the striatum, DA clearance from the synaptic cleft is thought to be largely dependent 

on the function of DAT. However, the DAT expression is much lower in the cortex 

compared to the striatum and the rate of DA uptake by DAT is slow (Garris et al. 1993, 

Lewis et al. 2001, Sesack et al. 1998, Wayment et al. 2001). Thus, some other 

mechanism, such as enzymatic degradation by COMT and MAO, and DA uptake by 

NET, may participate in the DA clearance from the synaptic cleft. Indeed, studies in 

COMT KO mice have revealed that DA levels are increased in the PFC but not in the 

striatum, pointing to a role of COMT in DA clearance in the cortical areas but not in the 

striatum (Gogos et al. 1998). Also, Matsumato et al. (2003) have noted that the COMT 

mRNA expression is higher in the PFC than in the striatum in both humans and rats. On 

the other hand, it has been assumed that MAO inhibitors attenuate the velocity of DA 

clearance by 30-50 % in the mPFC (Wayment et al. 2001). Taken together, these results 

indicate that enzymatic degradation of DA might regulate synaptic DA concentration in 

the brain areas where DAT activity is low. The heterosynaptic regulation of DA release 

in the CNS is discussed more detailed in the next chapters. 

 

2.1.6. Dopamine and other neurotransmitter systems 

Several neurotransmitter systems modulate the release of DA in the CNS. The most 

well-studied neurotransmitter systems mediate their effect via NA, 5-hydroxytryptamine 

(5-HT), glutamate and GABA. The receptors of these neurotransmitter systems and 

their effect on DA cell firing in the VTA are listed in table 2. In this study, the main 

interest was the α2-AR- and to a lesser extent - NMDA receptor mediated modulation of 

DA release in the CNS. Therefore, the next chapters will focus on these two 

neurotransmitter systems.  
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Table 2. Neurotransmitter systems modulating DA cell firing in the VTA. 

* Only after blockade of somatodendritic D2 autoreceptors 
** NC = no change 
 

        Effect on DA cell 
Transmitter   Receptor   firing in VTA    References 
Noradrenaline: 
    α1    DA cell firing ↑ *   (Grenhoff et al. 1995) 
    α2    DA cell firing ↓   (Gobbi et al. 2001, Millan et al. 2000b) 
    β     not studied      
 
Glutamate: 
    Ionotropic:  
    - NMDA    DA cell firing↑   (Suaud-Chagny et al. 1992, Wang et al. 1993) 
    - AMPA/Kainate    DA cell firing ↑   (Suaud-Chagny et al. 1992, Wang et al. 1993) 
 
    Metabotropic: 
    - Group 1   DA cell firing ↑   (Zheng et al. 2002) 
    - Group 2   not studied     
    - Group 3    not studied     
 
5-HT:  
    5HT1A     DA cell firing NC**/↑  (Arborelius et al. 1993, Prisco et al. 1994) 
    5HT2A     DA cell firing ↑   (Pessia et al. 1994) 
    5HT2C     DA cell firing ↓   (Di Giovanni et al. 2000, Prisco et al. 1994)  
    5HT3     DA cell firing ↑   (Campbell et al. 1996) 
    5HT5     not studied 
    5HT6     not studied 
    5HT7    not studied 
 
GABA: 
    GABAA    DA cell firing ↓   (Lacey 1993, White 1996) 
    GABAB    DA cell firing ↓   (Lacey 1993) 
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2.1.7. Adrenergic regulation of the dopaminergic system 

The main source of NA in the CNS is the LC, a bilateral adrenergic nucleus in the 

dorsolateral tegmentum near the fourth ventricle. The axons of LC branch extensively 

throughout the neuraxis innervating most regions in the CNS (Foote et al. 1983). The 

ascending projections of the LC comprise the dorsal noradrenergic bundle and the 

dorsal periventricular pathways. Other sources of NA innervation consist of the lateral 

tegmental (A1, A5, A7) and dorsal medullary (A2) noradrenergic cell groups that give 

rise to the ventral noradrenergic bundle, which innervates mainly the thalamus, 

hypothalamus, preoptic area, propriobulbar networks in the brainstem and send 

descending fibers to the spinal cord (Björklund and Lindvall 1986) (Fig. 1). 

 

2.1.7.1. Interaction sites and mechanisms 

Dopaminergic and noradrenergic systems interact at many levels in the CNS. First, 

adrenergic neurons from the LC project into the VTA (Jones et al. 1977, Phillipson 

1979, Simon et al. 1979) and VTA efferent axons descend into the LC (Beckstead et al. 

1979, Ornstein et al. 1987), which enables direct crosstalk between these systems. 

Several studies have indicated that the adrenergic regulation of dopaminergic VTA 

neurons is mediated by α1-ARs postsynaptic to fibres originating from LC (Grenhoff et 

al. 1993, Grenhoff et al. 1995). On the other hand, α2-ARs can also participate in the 

regulation of DA neurons by acting as autoreceptors on noradrenergic afferent terminals 

and thus indirectly inhibit DA release in the VTA (Grenhoff et al. 1993). In addition, 

cells expressing D1 and D2 receptor mRNA are present in the LC (Meador-Woodruff et 

al. 1991). 

 

Second, dopaminergic and noradrenergic projections overlap in their terminal regions 

such as mPFC, NAc and striatum, and there is a body of growing evidence for an 

interaction between these two neurotransmitter systems at the terminal level (Carboni et 

al. 1990, Devoto et al. 2001, Devoto et al. 2002, Di Chiara et al. 1992, Feenstra 2000, 

Feenstra et al. 2000, Gresch et al. 1995, Kawahara et al. 2001, Moron et al. 2002, Tassin 

1992, Tassin et al. 1992). Interestingly, DA may have even higher affinity for NET than 

NA (Horn 1973, Raiteri et al. 1977), and NET mainly contributes to the removal of DA 
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from the extracellular space in the mPFC, and to a lesser extent in the NAc (Carboni et 

al. 1990, Cass and Gerhardt 1995, Pozzi et al. 1994, Tanda et al. 1997, Yamamoto and 

Novotney 1998). On the other hand, a recent study by Valentini et al. (2004) suggests 

that in the parietal and occipital cortex, NET is not involved in the clearance of DA 

from the extracellular fluid in rat. In contrast, in the DA rich striatum DAT is believed 

to be solely responsible for the DA removal from the extracellular fluid (Carboni et al. 

1990, Di Chiara et al. 1992, Gresch et al. 1995, Moron et al. 2002, Pozzi et al. 1994).  

 

Third, the adrenergic system can indirectly regulate DA release in the VTA via other 

neurotransmitter systems, such as glutamate- and GABAergic systems. The VTA 

receives an intense glutamatergic projection from the frontal cortex (Rossetti et al. 

1998) that enhances DA release via NMDA-receptor mediated mechanism (Kretschmer 

1999). These glutamatergic neurons are under adrenergic regulation, so that α1-AR 

stimulation enhances their firing (Marek and Aghajanian 1999) whereas α2-AR 

stimulation mainly inhibits their firing (Kovacs and Hernadi 2003). In addition, 

pyramidal neurons in the VTA can be indirectly inhibited via α-ARs on GABAergic 

interneurons (Kawaguchi and Shindou 1998).  

 

Fourth, Devoto et al. have proposed a co-release theory for NA and DA, which claims 

that DA is released from NA terminals in posterior cortical areas (Devoto et al. 2001, 

Devoto et al. 2002, Devoto et al. 2003, Devoto et al. 2004). This hypothesis is based on 

findings that in some studies the extracellular DA levels in the parietal and occipital 

cortices are only modestly lower than in the mPFC where DA innervation is known to 

be much denser and that drug treatments that modify mainly noradrenergic activity 

modulate also extracellular DA levels in these cortical areas. However, several other 

mechanisms, such as adrenergic heteroceptors and competition of DA and NA for the 

same transporter, might underlie these findings, leaving the origin of released DA in 

posterior cortical regions an open question. 
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2.1.7.2. Alpha2-adrenoceptors 

Adrenoceptors are divided into three main families, α1-, α2- and β-ARs, which all are 

further divided into three subfamilies: α1A-, α1B- and α1C-ARs; α2A-, α2B- and α2C-ARs; 

and β1-, β2- and β3-ARs, respectively (Bylund 1988). All adrenoceptors belong to the 

GPCR family. The α2-ARs are negatively coupled to GPCR via the Gi/o signaling 

system, which inhibits the adenylyl cyclase activity and the opening of the voltage-

gated calcium and potassium channels (Limbird 1988, Surprenant et al. 1992). α2A-ARs 

are located mainly in the cortex, LC, hippocampus and brainstem; α2C-ARs are found in 

the cortex, hippocampus, LC and striatum; in contrast α2B-ARs in the brain are located 

almost exclusively in the thalamic nuclei (Aoki et al. 1994, Holmberg et al. 2003, Lee et 

al. 1998, MacDonald and Scheinin 1995, Nicholas et al. 1993, Scheinin et al. 1994). α2-

ARs are present in the CNS both as prejunctional autoreceptors, inhibiting further NA 

release (Docherty 1998, Starke 1977, Starke 1987), and as postjunctional receptors 

either on the bodies and dendrites of target cells (Docherty 1998, MacMillan et al. 

1996) or as heteroceptors, inhibiting the release of other modulatory neurotransmitters, 

such as DA (Gobert et al. 1998, Trendelenburg et al. 1994). 

 

The α2A-AR has been considered the predominant α2-AR subtype in the brain and the 

main regulator of presynaptic autoinhibition of NA release in the CNS (Altman et al. 

1999, Hein et al. 1999, Trendelenburg et al. 1999, Trendelenburg et al. 2001a, 

Trendelenburg et al. 2001b). In vitro superfusion studies in α2A-AR wild type (WT) and 

KO mice have revealed that the α2-AR agonist UK 14304 inhibited NA release 

maximally by 96 % in the occipito-parietal cortex in α2A-AR WT and also in a similar 

manner in α2B- and α2C-AR KO mouse preparations but UK 14304 only evoked a 24 % 

reduction in NA release in α2A-AR KO mouse preparations (Bucheler et al. 2002). I.e. 

reduced by nonetheless, some inhibition by UK 14304 remained in α2A-AR KO mouse 

brain tissue. Studies in the double mutant α2AC-AR KO mouse line indicated that the 

remaining autoinhibtion was mediated by α2C-ARs (Bucheler et al. 2002, Hein et al. 

1999, Trendelenburg et al. 2001a). Taken together, these results suggest that α2A-

autoreceptors predominate in the CNS while the role of α2C-autoreceptors becomes 

more pronounced when the α2A-AR is absent. A recent report by Trendelenburg et al. 
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(2003) has proposed that also the third α2-AR subtype, α2B-AR, may serve as an 

autoreceptor in the postganglionic sympathetic neurons. 

 

α2A-ARs are likely to mediate most of the heteroceptor function in the CNS (Gobert et 

al. 1998, Scheibner et al. 2001, Trendelenburg et al. 1994). Scheibner et al. (2001), 

using in vitro superfusion technique for 5-HT analysis, found that α2-heteroreceptors in 

the hippocampus were a mixture of predominantly α2A-ARs and to a lesser extent α2C-

ARs, based on the finding that 5-HT release-inhibiting effect of the α2-agonist 

medetomidine was reduced in α2A-AR KO and α2C-AR KO mice in hippocampal tissue 

and disappeared completely in α2AC-AR KO mice. On the other hand, an in vivo 

microdialysis study in the rat frontal cortex found markedly decreased extracellular DA 

levels after a local infusion of α2-agonists, DMT and guanabenz, and increased levels 

after local infusion of α2-antagonists, RX 821002 and BRL 44408 (Gobert et al. 1998). 

In the same study, the α1/α2-antagonist prazosin, which is preferentially an antagonist 

for α2C- and α2B-ARs but not for α2A-AR, did not affect DA release, indicating a 

predominant role of α2A-AR subtype also in the regulation of DA release in the CNS. 

However, so far the lack of subtype-specific α2-AR drugs has precluded a direct 

comparison between the α2-AR subtypes on the regulation of neurotransmitter release. 

Therefore, mutant mouse lines that either lack or overexpress a particular α2-AR 

subtype offer the best tool to investigate the role of α2-AR subtypes in the regulation of 

transmitter release. However, most of the in vivo studies that have investigated the 

modulatory role of different α2-AR subtypes in the regulation DA metabolism have 

been done only in post mortem brain material (Lähdesmäki et al. 2003, Sallinen et al. 

1997). 

 

Sallinen et al. (1997) using mice that either overexpress or lack α2C-ARs, found that the 

α2-agonist, DMT, inhibited NA and DA turnover in whole brain homogenates in a 

similar manner in OE (overexpressing) and KO mice and their wild-type controls. 

Interestingly, drug-naive KO mice had lower HVA concentrations in the striatum and 

OE mice higher HVA concentrations in the frontal cortex indicating the involvement of 

α2C-ARs in the dopaminergic regulation, not only in the striatum, but also in the cortex. 
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On the other hand, Lähdesmäki et al. (2003) found that DMT inhibited DA turnover 

(HVA/DA ratio) in the striatum and thalamus-hypothalamus of α2A-AR WT mice, 

whereas in α2A-AR KO mice DMT was without any significant effect. However, DMT 

and α2-antagonist, ATZ, failed to induce any major changes in DA turnover in mice 

lacking the α2A-AR subtype (Lähdesmäki et al. 2003). 

 

2.1.8 NMDA-receptor regulation of dopaminergic system 

Glutamate is the major excitatory neurotransmitter in the mammalian CNS. It acts 

through ligand- gated ion channels (ionotropic receptors) and G-protein coupled 

(metabotropic) receptors. The ionotropic glutamate receptors have four to five subunits, 

and are further subdivided into three groups, AMPA, NMDA and kainate receptors. 

This classification is based on both receptor pharmacology and structural similarities. 

Activation of glutamate receptors is responsible for basal excitatory synaptic 

transmission and many forms of synaptic plasticity such as long-term potentiation and 

depression, which is thought to underlie learning and memory (Abbott and Nelson 

2000, Sourdet and Debanne 1999).  

 

The glutamatergic innervation from the mPFC is the major excitatory input to VTA 

(Hurley et al. 1991, Sesack et al. 1989). The mPFC glutamatergic neurons innervate 

dopaminergic and also non-dopaminergic cells in the VTA (Sesack and Pickel 1992). 

The mPFC glutamatergic input has been shown to synapse on dopaminergic cells that 

project back to the mPFC and onto the GABAergic cells that project to the NAc (Carr 

and Sesack 2000). Thus glutamate can control dopaminergic activity in the VTA 

through glutamate receptors located in the VTA and via other neurotransmitter receptors 

located in the pyramidal neurons of the mPFC, which determine the output activity of 

glutamatergic projections, thereby modulating the release of glutamate in the VTA. 

 

Systemic administration of non-competitive NMDA receptor antagonists appears to 

facilitate burst firing of mesolimbic VTA neurons (Freeman and Bunney 1984, French 

and Ceci 1990, French et al. 1993, Murase et al. 1993b) and thereby increase DA 

release in the NAc (Gonon and Buda 1985). In contrast, competitive NMDA receptor 
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antagonists have no effect on these parameters when given systemically (French and 

Ceci 1990, French et al. 1993). Biochemical studies have also demonstrated increased 

DA turnover or release in ventral striatum after intra-VTA application of glutamate or 

the NMDA receptor agonist (Kalivas et al. 1989, Suaud-Chagny et al. 1992, Wang et al. 

1994). On the other hand, stimulation of the PFC increases levels of extracellular DA 

within the NAc (Karreman and Moghaddam 1996, Murase et al. 1993a, Taber et al. 

1995a, Taber and Fibiger 1995b), an effect that is blocked by infusion of glutamate 

antagonists into the VTA but not into the NAc (Karreman and Moghaddam 1996, Taber 

et al. 1995a, Taber and Fibiger 1995b). Inactivation of the PFC produces the opposite 

response (Murase et al. 1993a), pointing to a role of the PFC in the regulation of tonic 

levels of DA in the NAc.  

 

2.1.9. Dopamine and schizophrenia 

Schizophrenia is a complex psychiatric disorder with heterogenous symptoms. It is 

characterized by the presence of positive and negative symptoms. Positive symptoms 

include behaviour such as delusions, hallucinations, extreme emotions, excited motor 

activity and incoherent thoughts and speech. In contrast, negative symptoms are 

described as behavioural deficits such as blunting of emotions, language deficits, and 

lack of energy. Even though no single organic cause for schizophrenia has been found, 

there is evidence for anatomical changes in brain of schizophrenic patients, such as an 

increase in brain ventricular volume and decreased volume of temporal lobe (Johnstone 

et al. 1976, Weinberger et al. 1979a, Weinberger et al. 1979b); the presence of a genetic 

component (Kety 1975, Kety 1987, Kety et al. 1994); imbalance in DA receptor density 

in the striatum and PFC (Hess et al. 1987, Seeman 1985) and involvement of several 

neurotransmitter systems, such as DA, glutamate, serotonin and NA in this disease.  

 

In the 1950s, the first antipsychotic drug, chlorpromazine, was discovered accidentally 

as the original idea was to develop an effective antihistamine drug. Carlsson and 

Lindqvist (1963) found that typical antipsychotic drugs such as haloperidol and 

chlorpromazine increased the turnover of monoamines as reflected by increased levels 

of their metabolites, leading to the concept that antipsychotic drugs may block 

monoamine receptors. This hypothesis received from findings that amphetamine 
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induced stereotypic behaviour in animals that resembles the positive symptoms of 

schizophrenia. High doses of amphetamine evokes excessive gnawing, licking, 

chewing, sniffing and scanning in rats and chronic amphetamine administration in non-

human primates elicits behaviours such as hypervigilance, abnormal tracking, grasping 

and manipulation of thin air (Ellinwood et al. 1973, Ellison et al. 1981, Ellison and 

Eison 1983, Ridley et al. 1982). On the other hand, the observation that antipsychotic 

drugs potently blocked the psychostimulant actions of amphetamine in animals and 

humans (Angrist et al. 1980, Kelly and Miller 1975, Randrup and Munkvad 1965, 

Snyder 1973) suggested that dopaminergic signal transduction did play a role in the 

development of schizophrenia. These findings were further linked to the DA hypothesis 

of schizophrenia (Carlsson 1977, Matthysse 1973) as antipsychotic drugs were found to 

block D2-receptors (Creese et al. 1976). However, this D2-receptor blocking is able to 

alleviate only positive symptoms of schizophrenia, leaving negative symptoms 

unchanged. A more recent modification of the DA hypothesis of schizophrenia is that a 

mesolimbic dopaminergic hyperfunction coexists with hypofunction of dopaminergic 

terminals in the PFC, and it is the latter that accounts for the negative symptoms (Davis 

et al. 1991, Svensson et al. 1995, Svensson 2000, Weinberger 1988). 

 

The non-competitive NMDA-receptor antagonists, such as phencyclidine and ketamine, 

induce both negative and positive symptoms of schizophrenia in normal individuals 

(Javitt and Zukin 1991, Snyder 1980) and also profoundly exacerbate both negative and 

positive symptoms in schizophrenic patients (Itil et al. 1967, Lahti et al. 2001). These 

findings provided evidence for the role of glutamate in schizophrenia, suggesting that 

the disease is accompanied by a hypoglutamatergic state in the brain (Olney and Farber 

1995). Another finding speaking indirectly in favour of the glutamate hypothesis of 

schizophrenia was the development of atypical neuroleptics, such as clozapine. These 

drugs relieved also the negative symptoms of schizophrenia and caused fewer side 

effects compared to typical antipsychotic drugs (Meltzer 1995, Remington et al. 1996, 

Stephens 1990). Notably, clozapine has lower affinity for the D2 receptor than the 

typical neuroleptics (Farde et al. 1997, Nordström et al. 1995) and binds even more 

effectively to D4 than D2 receptors (Tarazi et al. 1997, Van Tol et al. 1991). Clozapine 

has also high affinity to many other receptors such as adrenergic α1- (Cohen and 
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Lipinsky 1986, Peroutka and Snyder 1980); serotonergic 5-HT1C- and 5-HT2- (Canton 

et al. 1990, Hoenicke et al. 1992, Schmidt et al. 1995); glutamatergic NMDA- (Banerjee 

et al. 1995, Lidsky et al. 1997) and GABAA- (Michel and Trudeau 2000, Squires and 

Saederup 2000) receptors. 

 

The DA and glutamate hypotheses of schizophrenia are not necessarily mutually 

exclusive. Namely, as a general rule, DA receptors inhibit glutamate release and 

therefore, mesolimbic DA overactivity can result in the continued and excessive 

suppression of glutamate release. This in turn could cause NMDA receptor 

hypofunction, which could disrupt DA firing pattern in the VTA. Interestingly, Olney et 

al. (1989) showed that phencyclidine and several other non-competitive NMDA 

receptor antagonists, such as MK-801, ketamine and tiletamine, induced acute 

neurodegenerative changes in the adult rat brain. These neurodegenerative changes 

consisted of vacuolar changes involving endoplasmic reticulum and mitochondria and 

were confined especially to the posterior cingulate and retrosplenial cortices. However, 

certain typical antipsychotic agents such as haloperidol and thioridazine, and more 

potently atypical antipsychotics such as clozapine, could prevent NMDA antagonist 

induced neurotoxicity in the posterior cingulate and retrosplenial cortices (Farber et al. 

1993, Farber et al. 1996).  

 

The brain imaging techniques, positron emission tomography (PET) and single-photon 

emission computed tomography (SPECT), have made it possible to study psychosis and 

schizophrenia in humans. The first brain imaging studies were performed in the 1980s 

and focused on measurements of striatal D2 receptors to obtain further support for DA 

hypothesis of schizophrenia (Farde et al. 1986, Wong et al. 1986). Studies in drug-free 

schizophrenic subjects suggest that psychotic symptoms might be related to augmented 

release of DA in brain, especially an abnormal hyperresponsiveness of the mesolimbic 

DA projection (Breier et al. 1997, Laruelle et al. 1996). So far, the majority of the brain 

imaging studies has focused on the neostriatum where D2 receptor density is higher 

than in cortical and limbic regions of the brain. Also in vivo microdialysis studies in rats 

have demonstrated that non-competitive NMDA-receptor antagonists, such as MK-801, 

evoke a long-lasting increase in DA output within the terminal regions of the 
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mesocorticolimbic and the nigrostriatal DA systems (Mathe et al. 1999, Wedzony et al. 

1993). However, the development of the more specific tracers for D2 receptors has 

allowed brain imaging studies also in the brain areas with high interest in schizophrenia 

but low density of DA receptors. For instance, there is evidence for a more widespread 

DA innervation in other cortical regions, including the posterior cingulate/retrosplenial 

cortex (Descarries et al. 1987, Gaspar et al. 1989, Hall et al. 1996, Lewis et al. 2001) 

where the most severe symptoms of glutamate neurotoxicity have been found (Olney et 

al. 1989). However, only a few animal or human studies on these areas have been 

conducted so far. 

 

2.2. IN VIVO MICRODIALYSIS 

2.2.1. History 

The last decades have witnessed the introduction of many methods to study the 

extracellular compartment of intact brain. The early approaches to investigate the brain 

extracellular environment were ventricular perfusion, cortical cup perfusion and push-

pull cannulae (Gaddum 1961, Nieoullon et al. 1977a). In 1973 the in vivo voltammetry 

method was developed where carbon paste electrodes were used for the detection of 

oxidizable molecules, such as DA, in the extracellular fluid (Kissinger et al. 1973). 

 

The first steps towards the in vivo microdialysis technique were taken by Bito et al. 

(1966) who implanted a dialysis membrane, containing saline solution, into the 

parenchyma of the cerebral hemispheres of dogs. These saline containing membrane 

sacs were removed ten weeks later from the tissue and the amino acids were analysed. 

The next improvement to the microdialysis method came by Delgado et al. (1972) who 

developed a dialytrode, which resembles the microdialysis cannulae used nowadays. 

The modern microdialysis method was discovered by Swedish workers in 1980's who 

had the idea that the microdialysis cannula would mimic the function of capillary blood 

vessels. The use of small diameter hollow dialysis fibres together with very sensitive 

analytical techniques strongly stimulated the development of the modern microdialysis 

method (Jacobson et al. 1985, Ungerstedt 1984). 
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2.2.2. Principle 

In vivo microdialysis is a sampling method that measures the chemical composition of 

the interstitial tissue fluid that surrounds cells and other organs in the body. In vivo 

microdialysis can be performed in almost every organ of the body such as blood, 

muscles, adipose tissue and brain tissue. In the brain, the microdialysis technique is 

based on the assumption that the extracellular neurotransmitter levels equilibrate with 

the solution flowing through the dialysis cannula implanted in a discrete brain area. The 

microdialysis cannula consists of small diameter hollow microdialysis inlet and outlet 

tubings that are covered with a porous dialysis membrane. The dialysis membrane 

allows the entry of small molecules such as neurotransmitters and their metabolites 

inside the microdialysis cannula but prevents the removal of large molecules and 

proteins from the extracellular fluid (fig. 4). The dialysis fluid that resembles the 

extracellular fluid in the tissue by its chemical composition is perfused at a constant 

flow (normally 0.5-3 μl/min) through the microdialysis cannula. The exchange of 

substances through the membrane takes place by diffusion in both directions while the 

small volume dialysis samples (usually 10-50 μl) are collected. Since the in vivo 

microdialysis method is only a sampling method, it needs to be accompanied by a 

sensitive analysing system for the detection of neurotransmitters. The most frequently 

used analysing method is high performance liquid chromatography (HPLC) coupled 

either with electrical or fluorescence detections. 

 
Fig. 4. The principle of in vivo microdialysis technique. 
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2.2.3. Specific features 

The crucial question with the in vivo microdialysis method is whether the collected 

samples represent the synaptic release or is it mixed with release from non-synaptic 

sources, such as glial cells. Many monoamine neurotransmitters, such as DA, NA and 

serotonin do fulfil the criteria for synaptic release, whereas glutamate and GABA are 

more complex in this respect (Timmerman and Westerink 1997). Usually the neuronal 

release is indicated in microdialysis studies by infusing with the dialysis fluid a 

selective sodium channel blocker, e.g. tetrodotoxin, or omitting calcium ions from the 

dialysis fluid. Another important aspect in the in vivo microdialysis is whether the 

dialysis samples represent the "true" extracellular concentration in the studied brain 

area. The microdialysis cannula is in the extracellular space but not in the immediate 

vicinity of the nerve endings. In the brain tissue, the clearance of neurotransmitters from 

the synaptic cleft is a rapid process - what is being measured is the neurotransmitter 

content of the transmitter that has left the synaptic cleft and reached the microdialysis 

membrane. For this reason, it may not be reasonable to concentrate on the measure of 

absolute concentration of a neurotransmitter in the sample but rather the relative change 

in the neurotransmitter concentration from its baseline. However, there are some 

dialysis methods that can give a relatively good estimation of measured 

neurotransmitter concentration in the tissue. The most commonly used method is in 

vitro recovery calibration of the microdialysis cannulla. In vitro recovery refers to the 

ratio of the concentration of a substance in the dialysate and the concentration of the 

same substance in the medium in which the cannula is positioned. However, due to 

difference in diffusion coefficients between water and tissue extracellular fluid, in vitro 

recovery calibration does not give a reliable estimate of the substance concentration in 

the tissue. The more reliable method for the estimation of extracellular neurotransmitter 

concentration in the tissue is the no-net-flux method, where the tissue is perfused with 

varying concentrations of the studied substance, and then the equilibrium constant for 

the substance is calculated (Hooks et al. 1992, Justice 1993, Lonnroth et al. 1987). 

Alternatively the perfusion flow is varied during the experiment and the change of 

substance emerging from the cannula is measured and extrapolated to zero flow 

(Jacobson et al. 1985). Both of these methods require that the extracellular levels of 

neurotransmitter remain constant during the experiment. 
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The in vivo microdialysis method has some limitations that need to be taken into 

account when planning the experiments. First, most of the microdialysis studies are 

nowadays done in rodents. Due to small brain volume of rodents, the microdialysis 

cannula (diameter normally 250-350 μm) causes a relatively large lesion in the brain 

and the collection of microdialysis samples is mainly localised to the scared tissue area 

around the cannula. Furthermore, after the insertion of the cannula into the tissue, 

several disturbing processes, such as bleeding and reduced oxygen levels, might affect 

the condition of the cells and surrounding tissue (Benveniste et al. 1987, Bungay et al. 

2003, Georgieva et al. 1993). Second, clogging of the cannula membrane by 

extracellular substances or the growth of glial cells around the membrane limits the time 

scale of a single dialysis experiment usually to 3-4 days (Georgieva et al. 1993, 

Imperato and Di Chiara 1985, Jacobson and Hamberger 1984, Pei et al. 1989, Sandberg 

and Lindstrom 1983, Westerink and Tuinte 1986). Third, the microdialysis method does 

not allow for the measurement of neurotransmitter release from a single neuron or even 

a small population neurons but more likely from tens of thousands of neurons. Thus, in 

vivo microdialysis is applicable to relatively large areas and nuclei in the brain whereas 

smaller structures are more difficult to reach. Fourth, the continuous removal of 

neurotransmitters from the brain may have disturbing effect on the biological balance of 

the studied brain structure. Fifth, the sample collection interval in the in vivo 

microdialysis method is normally 5-30 minutes, which is a relatively long period for the 

detection of rapid biological processes in the brain. This feature limits the use of in vivo 

microdialysis in behavioural studies, where rapid processes are of interest. However, the 

development of more sensitive analysing methods has made it possible to decrease the 

time needed to collect dialysis samples (Feenstra and Botterblom 1996, Sauvinet et al. 

2003, Shou et al. 2004). 

 

Despite the above mentioned limiting factors, the in vivo microdialysis method has 

several advantages for studies of neurochemistry in the CNS. First, in vivo microdialysis 

can be performed in conscious animals, which allows experiments in their natural 

environment and without the disturbing effects of anaesthetics. Also the possibility to 

combine in vivo microdialysis and behavioural tasks broaden the use of microdialysis to 

studies on the relationship between neurochemical effects and behaviour, such as 
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classical conditioning (Cheng et al. 2003, Feenstra et al. 2001, Mingote et al. 2004), 

circadian rhythm (Kametani and Kawamura 1991, Paulson and Robinson 1994), feeding 

(Bassareo and Di Chiara 1999a, Bassareo and Di Chiara 1999b), stress (Abercrombie et 

al. 1989, Cenci et al. 1992, Enrico et al. 1998, Kawahara et al. 1999), sexual behaviour 

(Becker et al. 2001, Fiorino and Phillips 1999), reward (Di Chiara et al. 2004, 

Hernandez and Hoebel 1988b, Ventura et al. 2003). Second, the dialysis membrane is a 

barrier between the cannula and surrounding tissue that prevents the removal of large 

molecules and proteins from the tissue, minimizing the perturbation to the neural 

environment. Third, as in vivo microdialysis is a sample collection method, the collected 

samples represent all substances that pass through the dialysis membrane. This makes 

them accessible to the very sensitive analytical techniques, which include the majority 

of known neurotransmitters and their metabolites. Fourth, a very important aspect in the 

in vivo microdialysis method is the possibility to infuse drugs locally through the 

cannula to target tissue, so called reverse microdialysis. The local application of drugs 

into the specific part of the brain helps to study local effects of treatments without the 

drug affecting the entire brain. 
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3. AIMS OF THE STUDY 

The purpose of this study was to investigate the brain dopaminergic system and its 

interaction with adrenergic α2-receptors and NMDA glutamate-receptors. In vivo brain 

microdialysis was used in the present series of experiments to study the extracellular 

concentrations of DA and NA in mouse and rat brain. The specific aim of this study was 

to address the following questions: 

 

• How different stressors such as handling, novel environment and needle injection 

modulate DA and NA release in different brain areas in mice and rats (I, II, III, IV)? 

• What is the specific role of α2A-AR and α2C-AR subtypes in the regulation of DA 

and NA release in the mPFC and NAc (II, III)? 

• Do α2A-AR and α2C-AR subtypes regulate DA and NA release differently during 

rest or under stressful stimulation in the mPFC (II)? 

• Do α2-ARs regulate DA and NA release at the terminal level in the NAc or 

indirectly e.g. from the VTA (III)? 

• How the α2-AR agonist or antagonist mediated pharmacological effect on DA 

release correlates with the locomotor activity (III)? 

• Does the non-competitive NMDA-antagonist, ketamine, increase DA release also in 

the posterior region of the rat brain as it does in medial frontal cortex or striatum 

(IV)? 
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4. MATERIALS AND METHODS 

4.1. ANIMALS 

The species, strain, gender and age of the animals in these experiments were the 

following: 

Study I: male C57BL/6J OLA-Hsd mice (n=30, mean weight 25 g, Harlan/CPB, The 

Netherlands), age 4-5 months.  

Study II: female alpha2A-adrenoceptor knockout (n=6, mean weight 27 g, Turku, 

Finland), female wild type C57BL/6J (n=6, mean weight 25 g, Kuopio, Finland) and 

male C57BL/6J (n=8, mean weight 29 g, Kuopio, Finland) mice, age 10-13 months.  

Study III: female alpha2A-adrenoceptor knockout (n=13, mean weight 27, Turku, 

Finland) and wild type C57BL/6J (n=18, mean weight 31, Kuopio, Finland) mice, age 

5-13 months.  

Study IV: male Wistar rats (n=8, mean weight 500-700 g, Kuopio, Finland) age 12-13 

months.  

 

The mutant mouse line, α2A-AR KO, was generated in the laboratory of Dr. Brian 

Kobilka at the Stanford University by Dr. John Altman (Altman et al. 1999). The 

behavioural phenotype of α2A-AR KO mouse line has been described by Lähdesmäki et 

al. (2002) and Schramm et al. (2001). Heterozygous α2A-AR KO mice were back-

crossed for five generations to C57BL/6J mice to create a congenic line. The α2A-AR 

KO mice were bred in the Central Animal laboratory of the University of Turku and 

transported to the National Laboratory Animal Centre at the University of Kuopio at the 

age of 4 months. The environmental conditions were controlled and constant (21±1 °C, 

humidity at 50±10 %, lights on 0700 – 1900 hours) with water and food freely 

available. All animal experiments were conducted according to the guidelines of 

Council of Europe (Directive 86/609), and were approved by the State Provincial Office 

of Eastern Finland (II, III, IV) and the Animal Experimentation Committee of the Royal 

Netherlands Academy of Arts and Sciences (I). 
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4.2. DRUGS 

4.2.1. Dexmedetomidine hydrochloride (II, III) 

Dexmedetomidine (Orion Corporation, Orion Pharma, Turku, Finland) is a specific but 

subtype non-selective α2-AR agonist (Millan et al. 2000a, Scheinin et al. 1989, Virtanen 

et al. 1988, Virtanen 1989). DMT has a very low affinity for 5-HT (Newman-Tancredi 

et al. 1998), imidazoline (Millan et al. 2000a) and α1-adrenergic receptors (Millan et al. 

2000a). In Study II, the effect of dexmedetomidine (DMT) was investigated on DA and 

NA release in the mPFC with local infusion (right hemisphere: 10-9 – 10-8 M). In Study 

III, DMT was administered both locally (right hemisphere: 10-9 – 10-7 M) in the NAc 

and with systemic injections (10 or 25 μg/kg). DMT was dissolved in deionized water 

and kept frozen (-40 ˚C) in small volumes. These stock solutions were diluted with fresh 

Ringer or physiological saline solution on the day of the experiment. Drug or vehicle 

was injected subcutaneously in a volume of 5 ml/kg. The drug concentrations were 

selected on the basis of literature and pilot studies.  

 

4.2.2. Atipamezole hydrochloride (III) 

Atipamezole (Orion Corporation, Orion Pharma, Turku, Finland) is a specific but 

subtype non-selective α2-AR antagonist (Millan et al. 2000a, Newman-Tancredi et al. 

1998, Virtanen et al. 1989). Like DMT, it has a very low affinity for 5-HT (Newman-

Tancredi et al. 1998), imidazoline (Millan et al. 2000a) and α1-adrenergic receptors 

(Millan et al. 2000a). In Study III, the effect of atipamezole (ATZ) was investigated on 

DA and NA release in the NAc both with local infusions (right hemisphere: 10-8 – 10-6 

M) and systemic injections (300 μg/kg). ATZ was dissolved in deionized water and kept 

frozen (-40 ˚C) in small volumes. These stock solutions were diluted with fresh Ringer 

or saline solution on the day of the experiment. Drug or vehicle was injected 

subcutaneously in a volume of 5 ml/kg. The drug concentrations were selected on the 

basis of literature and pilot studies. 
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4.2.3. Ketamine hydrochloride (IV) 

Ketamine (Ketalar, Parke-Davis Scandinavia, Sweden) is non-competitive glutamate N-

methyl-D-aspartate antagonist (Brockmeyer and Kendig 1995, Harrison and Simmons 

1985). In Study IV, the effect of subanaesthetic doses of ketamine (10 or 30 mg/kg, i.p.) 

was investigated on the DA release in the retrosplenial cortex. Ketamine was ready for 

use solution (50 mg/ml). The drug doses were selected on the basis of earlier studies 

(Moghaddam et al. 1997). 

 

4.3. EXPERIMENTS 

4.3.1. In vivo microdialysis (I, II, III, IV) 

On the day of surgery the animals were removed to individual perspex cages (25 x 25 x 

32 cm, free access to food and water), where also the microdialysis procedure was 

performed. Animals were anaesthetised with a mixture of pentobarbital and 

chloralhydrate (each 10 mg/ml, 3.5 ml/kg i.p.), except in Study I where chloralhydrate 

was used as an anaesthetic (3.5 % solution, 350 mg/kg). In addition, the local 

anaesthetic, lidocaine (10 mg/ml; Medipolar, Orion Corporation, Oulu, Finland), was 

applied on the skull. The mice were mounted in a Kopf stereotactic frame equipped with 

a DKI 921 mouse adapter (David Kopf Instr., Tujunga, CA, USA) and rats with a DKI 

920 rat adapter (David Kopf Instr., Tujunga, CA, USA). Flat horizontal positioning of 

the skull was assumed when ventral coordinates of bregma and lambda, and two 

positions ± 1.0 mm lateral to bregma were within 0.1 mm limits of bregma. 

 

The microdialysis cannulae were placed in the targeted brain regions according to the 

mouse (Franklin and Paxinos 1997) and rat (Paxinos and Watson 1986) brain atlas and 

secured with dental cement (Selectaplus, Densply Limited, Surrey, England) and two 

cranial screws (stainless steel screws 0.5 mm diameter). The detailed implantation 

coordinates can be found in fig. 5. The microdialysis cannula was mainly implanted into 

the dorsal striatum in Study I but the tip of the cannula was found to be in the shell of 

the NAc (which is part of the ventral striatum). For this reason this area is simply called 

striatum in the text as was done in the original publication. In Study III, the 
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microdialysis cannula was accurately implanted into the NAc and this nomenclature is 

used in the text and in the original publication. The microdialysis cannulae were 

handmade with inlet and outlet fused silica glass capillary protected by metal tubing. 

The dialysis membrane (i.d. 0.24 mm, o.d. 0.32 mm, Hospal 16.AN69 HF Filtral; 

Hospal Industrie, Meyzieu, France) was connected to cannula with two component 

epoxy glue. Saline (1 ml, s.c.) was injected after the operation and animals were 

provided with a warm water bottle in their individual perspex cages. Acetylsalicylic 

acid (AspirinR) (Study II: Alka-Seltzer, Bayer, Leverkusen, Germany; 1.5 mg/ml 

dissolved in drinking water) and carbiprofen (RimadylR) (Studies III and IV: 5.0 mg/kg 

s.c.; Vericore Ltd., Dundee, UK) were used for post-operative pain relief. 

 

 
Fig. 5. The location of the microdialysis cannulae in the mouse (medial prefrontal 

cortex, striatum, hippocampus and nucleus accumbens) and in rat brain 

(retrospenial/posterior cingulate cortex, RSPC). In Study I, two microdialysis cannulae 

were implanted bilaterally in the mPFC but in Study II one microdialysis cannula was 

inserted in the right side of the mPFC.  

 

Microdialysis experiments were started either three days after surgery (II, III, IV) or one 

day after surgery (I). Microdialysis cannula was connected using flexible PEEK tubing 
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(o.d. 0.51 mm; i.d. 0.13 mm; Upchurch, Oak Harbour, WA, USA) to rotating head-

piece (375/D/22QM, Instech Laboratories Inc, PA, USA) without further tethering. 

Ringer solution (Ringer: 145 mM NaCl, 2.7 mM KCl, 2.4 mM CaCl2, 1.0 mM MgCl2; 

except 1.2 mM CaCl2 in Study I) was perfused at a rate of 2.8 μl/min (CMA/100 

Microinjection Pump, Solna, Sweden). The dialysate was on-line introduced into the 

HPLC injection loop and automatically injected every 15.5 min. 

 

4.3.2. High performance liquid chromatography (I, II, III, IV) 

Extracellular concentrations of DA and NA were measured using the high performance 

liquid chromatography system consisted of a Shimadzu LC-9AD solvent delivery 

system (Shimadzu Corporation, Kyoto, Japan) and an ANTEC Decade electrochemical 

detector (Antec Leyden, Leyden, The Netherlands). The column oven of the Decade (33 

°C) contained a high efficiency pulse dampener, an electrically actuated injector (Valco 

EHN6W; Antec Leyden, The Netherlands) with 50 μl loop, Supelcosil LC-18-DB 

column (5 μm particles; 250 x 4.6 mm) with Supelguard LC-18-DB guard column (20 x 

4.6 mm) (Supelco, Bellefonte, PA, USA). A Coulochem 5011 detector cell (electrode 1 

operated on + 250 mV, electrode 2 on - 300 mV) (ESA Inc., Chelmsford, MA, USA) 

was controlled by the Decade using the TWIN option. The mobile phase consisted of 

mQ water with 10.4 mM citric acid (2 g/l), 6.1 mM sodium acetate (5 g/l), 1.85 mM 

heptanesulphonic acid (375 mg/l), 0.3 mM EDTA and 12.5% methanol. Data 

acquisition and analysis was carried out with the Shimadzu Class-VP software 

(Shimadzu, Duisburg, Germany). The detection limit for DA and NA was 0.1 pg. 

 

4.3.3. Stress (I, II, III, IV) 

The first way to induce mild stress was to take the mouse out of its home cage and place 

it on a towel on the experimenter's forearm. This is referred to as handling. During 

handling, the mouse usually sat quietly for the first few minutes and thereafter explored 

its surroundings on the towel. The mouse was restrained only if it tried to jump off the 

towel. The novel environment was a clean cage with sawdust, but no food or water. 

After sitting quietly for the first few minutes, the mouse usually chewed on and 

tunnelled into the sawdust and explored the cage. After handling or exposure to a novel 
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environment, the mouse was returned to its home cage. The duration of handling and 

exposure to a novel environment was 15 min, which was the time needed to collect one 

dialysate sample. The dialysate sample collection was continued during and after 

handling or exposure to the novel environment. 

 

The injection stress consisted of a saline injection (needle size 25 G) in a volume of 5 

ml/kg either subcutaneously (Study III) or intraperitoneally (Study IV). The animal was 

taken out of its home cage and immediately injected with saline. After injection, the 

animal was returned to the home cage. The dialysate sample collection was continued 

during and after the saline injection. 

 

4.3.4. Locomotor activity (III) 

Locomotor activity was tested in intact animals before in vivo microdialysis 

experiments in an automated activity monitor based on infrared detection (TruScan®, 

Coulbourn Instruments, Allentown, PA, USA). The system had four 26×26×39 cm 

perspex cages with two photobeam sensor rings that were connected to a computer for 

recording and data analysis. The mice were gently placed at the centre of the arenas and 

the recording was started individually in all cages. After 30 minutes, the recording was 

paused and the mice were injected either with saline or drug and the recording was 

continued for 1.5 h. Movement parameters were recorded in 15- min epochs and the 

total measurement time was set to 2 hours. 

 

4.4. HISTOLOGY 

After completion of the microdialysis studies, the animals were decapitated and the 

brains were quickly removed and immersed in 4 % formalin. Coronal sections (50 μm) 

were stained with cresyl violet to verify the accurate placement of the microdialysis 

cannulae. 
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4.5. STATISTICAL ANALYSIS 

The statistical analyses were made by using SPSS 10.0 for Windows computer program. 

Multivariate analyses (MANOVA), Scheffe’s t-test, contrast analysis (simple) and t-test 

were used to analyse line differences and the group and treatment interactions on 

different variables. Values of P < 0.05 were considered statistically significant. Methods 

for statistical analyses are described in detail in publications I-IV. 
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5. RESULTS 

5.1. GENERAL 

5.1.1. Basal levels of dopamine and noradrenaline (I, II, III) 

The basal levels of DA and NA are presented in table 3. The basal levels are not directly 

comparable with each other due to some differences in the measurements. Namely, two 

microdialysis cannulae were used bilaterally in Study I, but Studies II and III used only 

one microdialysis cannula. Also, in Studies II and III, the Ca2+-concentration (2.4 mM) 

was higher than in Study I (1.2 mM). 

 

Table 3. The basal levels of DA and NA in the mouse brain. The values are presented as 

concentrations of DA or NA per 50 μl (±SEM) per 1 mm active membrane length. 

Abbreviations: KOf = α2A-AR knockout female mouse; WTf = wild-type C57Bl/6J 

female mouse; WT = wild type C57Bl/6J male mouse. 

Brain   Mouse   pgDA/50μl  pgNA/50μl 
area   line   per mm  per mm 
Study I: 
mPFC (n=16)  WT   0.34 ± 0.05  0.52 ± 0.06 
striatum (n=7)  WT   4.47 ± 0.73  0.32 ± 0.04 
hippocampus (n=7) WT   0.14 ± 0.03  0.42 ± 0.04 
 
Study II: 
mPFC (n=6)  KOf   0.28 ± 0.04  0.97 ± 0.11 
mPFC (n=6)  WTf   0.33 ± 0.03  1.10 ± 0.10 
 
Study III: 
NAc (n=15)  KOf   7.87 ± 1.27  2.13 ± 0.31 
NAc (n=20)  WTf   5.31 ± 0.79  1.74 ± 0.24 
 

5.1.2. Stressful stimuli (I, II, III, IV) 

Handling, exposure to a novel environment and saline injection induced a marked 

increase in DA and NA levels in the mPFC, retrosplenial cortex and hippocampus in 

mice and rats, whereas in the striatum/accumbens an increase was seen only in the NA 

levels.  
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In Study I, the comparison of maximal increases after handling and novelty showed 

significant differences in DA efflux between the striatum (+22% and +15%) vs. the 

mPFC (+117 % and +78 %) and hippocampus (+190 and +95%) in male C57BL/6J 

mice (fig. 6A,B,E). NA levels responded in a similar manner as DA to stress in the 

mPFC and hippocampus, but in the striatum, the maximal increase in NA levels after 

handling was as high as 334 % and after novelty 137 % (fig. 6C,D). In Study II, the 

maximal increases in DA levels after handling were about 200 % in both female α2A-

AR KO and WT mice in the mPFC (fig. 6A). In Study III, the saline injection did not 

increase DA levels in female α2A-AR KO and WT mice in the NAc, but increased NA 

levels by about 100 % (fig. 6B,D). In Study IV, the saline injection increased DA levels 

by 70 % in the retrosplenial cortex in male Wistar rats (fig. 6F). 

 

 
Fig. 6. The effect of stressful stimuli on the extracellular concentrations of DA and NA 

in the mPFC, striatum/NAc, and hippocampus in mice and retrosplenial cortex in rats. 

Values are given as percentage changes from the baseline. The vertical dotted line 
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indicates the dialysate that was obtained during the handling, novelty or injection stress. 

Abbreviations: WT H1(2) = wild-type male mouse handling Study I(II); WT N1 = wild-

type male mouse novelty Study I; WT Fem H2 = wild-type female mouse handling 

Study II; KO Fem H2 = α2A-AR knockout female mouse handling Study II; WT Fem 

In3 = wild-type female mouse injection Study III; KO Fem In3 = α2A-AR knockout 

female mouse injection Study III; Rat In4 = rat injection Study IV; Hippoc = 

hippocampus; Str = striatum; RSPC = retrosplenial cortex. 

 

5.1.3. Repeated stressful stimulus (II) 

The handling-induced stress was repeated twice in the same day in male C57Bl/6 mice 

to assess possible habituation to the DA and the NA increase after the first stimulus. 

Our results show that there was no habituation to the handling-induced stress as DA and 

NA increases were equally high between two stressful stimuli in male C57Bl/6J mice 

(fig. 7). 

 
Fig. 7. The effect of repeated handling stimulus on the extracellular concentrations DA 

and NA in the mPFC in male C57Bl/6 mice. The arrow indicates the dialysate that was 

obtained during the handling. Values represent percentage changes from the baseline 

(±SEM). 
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5.1.4. Effect of calcium concentration on dopamine release 

In Studies II, III and IV, the Ca2+-concentration was twice as high as the "physiological" 

Ca2+-concentration (1.2 mM) in Study I. The higher Ca2+-concentration was used 

because the α2-agonist, DMT, induced a decrease in DA and NA levels compared to 

baseline and the detection of DMT-induced decreases on DA and NA levels would have 

been impossible since they would have been below the HPLC-system detection limits 

for DA in mPFC and NA in mPFC and NAc. However, our unpublished observations in 

rats indicate that the amphetamine-induced increase in DA levels were similar in the 

mPFC and retrosplenial cortices whit either high Ca2+-concentration (2.4 mM) or 

physiological Ca2+-concentration (1.2 mM) (fig. 8). The baseline DA concentrations 

were lower in rats that received 1.2 mM Ca2+-concentration in the dialysis fluid but the 

relative increase in DA levels after amphetamine treatment was equally high as that 

obtained in the rats that received 2.4 mM Ca2+-concentration in the dialysis fluid. 

 
Fig. 8. The effect of dialysate calcium concentration on the extracellular concentrations 

of DA and NA in the mPFC and retrosplenial cortex in rats. Amphetamine was infused 

locally (10-6-10-4 M) into the mPFC and retrosplenial cortex. Values represent 

percentage changes from the baseline. The vertical dotted lines indicate the changes in 

the dialysate amphetamine concentration. Abbreviations: aCSF = artificial cerebrospinal 

fluid; A 10-6 (A10-5 and A10-4) = amphetamine 10-6 M (amphetamine 10-5 M and 

amphetamine 10-4 M); mPFChigh = 2.4 Mm calcium concentration in the dialysate in 

the medial prefrontal cortex; mPFC = 1.2 mM calcium concentration in the dialysate in 
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the medial prefrontal cortex; RSPChigh = 2.4 Mm calcium concentration in the 

dialysate in the retrosplenial cortex; RSPC = 1.2 Mm calcium concentration in the 

dialysate in the retrosplenial cortex. 

 

5.1.5. Diffusion of dexmedetomidine into the brain 

The diffusion of DMT into the brain was studied before local infusion of DMT in the 

mPFC in Study II, to verify that the DMT effect was indeed restricted to the studied 

brain area. Our unpublished results revealed that simultaneous, local infusion of DMT 

(10-10 – 10-8 M) through microdialysis cannula in the ipsilateral mPFC did not affect DA 

and NA levels in the contralateral side of mPFC, which supports the belief that DMT 

exerted only local effects when administered via the microdialysis cannula (fig. 9). 

 
Fig 9. The effect of ipsilaterally infused α2-agonist, DMT, on the extracellular 

concentrations of DA and NA release in the contralateral side of the mPFC in male 

C57Bl/6 mice. DMT was locally infused into the mPFC (each concentration 60 min). 

Values represent percentage changes from the baseline (±SEM). Abbreviations: DMT-

10 (DMT-9 and DMT-8) = dexmedetomidine 10-10 M (dexmedetomidine 10-9 M and 

dexmedetomidine 10-8 M). 
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5.2. ALPHA2-ADRENERGIC DRUGS 

5.2.1. Locally infused alpha2-adrenoceptor agonist, dexmedetomidine, (II, III) and 

antagonist, atipamezole (III) 

DMT (10-9 – 10-8 M) decreased, in a concentration-dependent manner, extracellular DA 

levels in α2A-AR KO and WT mice in the mPFC, but the decrease was more 

pronounced in WT mice than in α2A-AR KO mice (fig. 10A). Also, NA levels decreased 

much more strongly in WT than in α2A-AR KO mice (fig. 10B).  

 

In the NAc, DMT (10-9 – 10-7 M) failed to decrease extracellular DA levels in both 

genotypes. However, NA levels decreased, in a concentration-dependent manner, in WT 

mice but not in α2A-AR KO mice (fig. 10C,E). ATZ (10-8 – 10-6 M) had no effect on DA 

and NA release in either genotype in the NAc (fig. 10D,F). 

 
Fig. 10. The effect of locally infused DMT on DA and NA release in the mPFC (A,B) 

and the NAc (C,E), and ATI in the NAc (D,F). Values are given as percentage changes 

from the baseline (±SEM). Abbreviations: ATZ = atipamezole; BAS = baseline; DMT = 

dexmedetomidine; KO = α2A-AR KO mouse; WT = wild-type mouse. 

 

Locally infused DMT (10-8 M) combined with handling-induced stress decreased peak 

DA and NA release in WT mice but was without effect in α2A-AR KO mice when 
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compared with the first handling episode without drug infusion in the mPFC (fig. 

11A,B). 

 
Fig 11. The relative difference in peak prefrontal DA and NA release between first 

(saline) and second (DMT 10-8 M) handling episodes in WT vs. α2A-AR KO mice. 

Values are given as percentage changes (the ratio of peak release of DA and NA 

between the first and second handling episodes) ±SEM. Peak I x peak II, **P<0.01; 

*P<0.05. Abbreviations: Dex = dexmedetomidine; KOf = or α2A-AR KO female mouse; 

WTf = wild-type female mouse; WTm = wild-type male mouse. 

 

5.2.2. Systemically administrated alpha2-adrenoceptor agonist, dexmedetomidine, (III) 

and antagonist, atipamezole (III) 

DMT (10 and 25 μg/kg) decreased significantly in vivo DA release in the NAc in WT 

mice, whereas in α2A-AR KO mice DMT failed to have any effect on DA overflow. A 

similar, but even more robust, effect was seen in NA levels (fig. 12A,C). ATZ (300 

μg/kg) had no effect on DA release either in WT or α2A-AR KO mice. However, NA 

levels remained elevated in WT mice after ATZ injection, whilst in α2A-AR KO mice 

NA levels returned soon back to the baseline level (fig. 12B,D). 
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Fig 12. Effect of systemically injected saline (sample 5), DMT (10 or 25 μg/kg; s.c.) 

(A,C) and ATZ (300 μg/kg, s.c.) (B,D) (sample 10) on DA and NA release in NAc in 

α2A-AR KO and WT mice. The number of animals used were as follows: DMT25, KO 

n=7, DMT10, WT n=5, DMT25, WT n= 8 and ATZ300, KO n=4, ATZ300, WT n=5. 

Values are given as percentage changes from the baseline (±SEM). Arrows indicate the 

first affected sample after saline and drug injections and filled symbols significant 

differences from the baseline (p<0.05). 

 

5.2.3. Locomotor activity (III) 

DMT (10 and 25 μg/kg) significantly decreased locomotor activity in WT mice, 

whereas in α2A-AR KO mice locomotor activity did not differ between saline and DMT 

treated animals (fig. 13A,C). ATZ (300 μg/kg) treated WT mice maintained a higher 

locomotor activity for a longer time period than saline treated WT mice. On the other 

hand, ATZ and saline treated α2A-AR KO mice did not differ from each other (fig. 

13B,D). 
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Fig. 13. Spontaneous locomotor activity expressed as the total number of movement 

episodes recorded in α2A-AR KO and wild WT mice. Saline (Sal) and DMT (10 or 25 

μg/kg, s.c.) (A, B) or ATZ 300 μg/kg) (C, D) were injected 30 min after the onset of 

recording. Total duration of the recording was set to 2 hours. The number of animals 

used were as follows: DMT, KO n=7, WT, n=9 and ATZ, KO n=6, WT, n=10. Filled 

symbols indicate significant differences from the saline group and arrows the injection 

time. 

 

5.3. NMDA ANTAGONIST KETAMINE (IV) 

Ketamine (10 and 30 mg/kg i.p.) injection increased in vivo release of extracellular DA 

in the retrosplenial cortex up to 200 % in male Wistar rats. The handling stress related 

to the saline injection also increased DA release in the retrosplenial cortex up to 70 % 

from the baseline but the ketamine-induced increase of DA levels was significantly 

higher (fig. 14). 
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Fig 14. Effect of saline injection (sample 5, i.p.) and ketamine injection (sample 11, i.p.) 

on DA release in the retrosplenial cortex in male Wistar rats. The circles denote the 

ketamine dose of 10 mg/kg and the triangles represent the ketamine dose of 30 mg/kg. 

Values are given as percentage changes from the baseline (±SEM). Significant increases 

from the baseline are shown as filled symbols. 
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6. DISCUSSION 

6.1. METHODOLOGICAL ASPECTS 

6.1.1. Mice 

The present series of experiments combined the in vivo microdialysis method with 

pharmacological interventions in mice deficient for a α2A-AR subtype to investigate the 

dopaminergic and noradrenergic neurotransmission in conscious mice (except for rats 

used in Study IV). These results give important new information about the role α2-AR 

subtypes in the regulation of DA and NA release in the mPFC and NAc. In Study IV, 

the effect of the non-competitive NMDA-antagonist, ketamine, was studied on DA 

release in the retrosplenial cortex. Furthermore, modulation of DA and NA 

neurotransmission in response to stressful stimuli was studied in the mPFC, 

hippocampus and striatum.  

 

One practical limitation of the study was that the collaborator was able to offer only 

female α2A-AR KO mice and no littermates to the α2A-AR KO mouse line. Thus female 

α2A-AR KO and WT mice were used in the experiments of Studies II and III. In these 

studies, the period of the oestrous cycle was not controlled. The oestrous cycle of 

female rodents has been reported to modulate dopaminergic neurotransmission in 

striatum and NAc (Becker 1999, Castner et al. 1993, Morissette and Di Paolo 1993, 

Xiao and Becker 1994). Oestradiol has also been shown to affect the number of α2-ARs 

in the PFC (Karkanias et al. 1997). These findings raise the question of whether the 

different phase of oestrous cycle in female mice would have had a disturbing effect on 

the results. However, it should be noted that generalization of the results is limited to 50 

% of the population if either female or male mice are used. Even though in this study 

the phase of the oestrous cycle was not monitored, the low level of variation in the basal 

and stimulated DA release suggests that the phase of oestrous cycle was unlikely to 

have any effect on the results. Indeed, the individual variation in monoamine release 

after stressful stimulus was no greater than in our previous studies in males (Ihalainen 

and Tanila 2002). 
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It should be noted that the WT mice did not represent the F1 hybrid population of the 

α2A-AR KO mouse line as is recommended (Silva et al. 1997). The origin of C57BL/6J 

mouse line that was used for backcrossing of α2A-AR KO mice was derived from 

Jackson Laboratories (Altman et al. 1999), whereas the α2A-AR WT mouse line was the 

locally bred C57BL/6J of the National Laboratory Animal Centre in Kuopio. Thus, the 

possibility cannot be ruled out that some differences in the background genome in 

addition to α2A-AR gene modification might have accounted for the observed 

differences between the α2A-AR KO and WT mice. However, the risk of such non-

specific background gene effects would be much higher in a direct comparison of KO 

and WT lines than in our approach of comparing the pharmacological effects on specific 

α2-AR drugs. 

 

The DA and NA levels were measured in two time periods in Study III. Thus the age 

variability was quite high (5-13 months) between the animals. However, the α2A-AR 

KO and WT mice were divided equally in both groups and there were no differences in 

the results between the mice that were measured in the first vs. second phase of the 

study. 

 

6.1.2. In vivo microdialysis method 

The in vivo microdialysis method has been used since the 1980's to determine the 

neurotransmitter contents in rats. However, the microdialysis has been routinely 

performed in mice only for 5-7 years when the availability of genetically modified 

mouse strains started to increase. Study I was one of the first in vivo microdialysis 

studies where the DA neurotransmission was investigated outside the striatum in 

conscious mice. Technically, the in vivo microdialysis method applied for mice differs 

little from the method used in rats, as specific microdialysis equipment such as small 

diameter and size microdialysis cannulae, low torque liquid swivels etc. have been 

developed, which are suitable for the mice studies. However, the relatively small brain 

volume in mice restricts the studies to larger brain structures as in rats. Also, shorter 

active dialysis membrane lengths are needed in mice due to the smaller brain size. This 

leads to a lower concentrations of collected neurotransmitters in the samples and highly 
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sensitive analysing methods are needed, especially in brain areas where the 

concentrations of studied substances are low. 

 

The chemical composition of dialysis perfusates varies between research groups. 

Different modifications of basic Ringer's solutions are common. The concentrations of 

basic ions such as sodium, potassium and chloride are in most cases in accordance with 

estimated physiological concentrations in the extracellular space of the brain (Jones and 

Keep 1987, Jones and Keep 1988). However, the composition of other ions in the 

perfusion fluid varies extensively. Indeed, magnesium is added to the perfusate in most 

cases, and some more complete artificial cerebrospinal fluids consist also of amino 

acids, glucose and sodium bicarbonate. There are also variations in dialysate calcium 

concentrations. It has been estimated that the physiological calcium concentration in the 

extracellular fluid is 1.2 mM (Jones and Keep 1988). Previous studies suggest that the 

high calcium concentration (2.4 and 3.4 mM) in the dialysis fluid changes the stimulus-

induced DA release in the nigrostriatal dopaminergic system compared to the 

physiological calcium concentration (Moghaddam and Bunney 1989, Tepper et al. 

1991). Nowadays most microdialysis studies are performed with a calcium 

concentration near 1.2 mM but in some cases higher calcium concentrations are needed. 

Indeed, in studies where the neurotransmitter concentrations are near the detection limit 

of the analysing system, calcium concentrations are increased in the dialysate. In this 

study, the 2.4 mM calcium concentration was used in the dialysate to aid in detecting 

the decrease of DA and NA levels induced by the α2-agonist. Importantly, the responses 

of DA and NA levels to handling-induced stressful stimulus in the mPFC and 

amphetamine-induced increase in the mPFC and retrosplenial cortex indicate that the 

results are basically similar with physiological and double (2.4 mM) calcium 

concentrations (fig. 6A,C and fig. 8).  

 

6.1.3. Stressful stimuli 

The dopaminergic system has been shown to be sensitive to stressful stimuli. Several 

microdialysis studies have reported most pronounced stress-related increase in DA 

release in the PFC, whereas in the striatum/accumbens the increase has been smaller 

(Abercrombie et al. 1989, Cenci et al. 1992, Enrico et al. 1998, Feenstra et al. 1998, 
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Imperato et al. 1991, Kawahara et al. 1999). These results support the idea that the 

dopaminergic system is globally activated by stress in the CNS but regional differences 

exist in the regulation of DA release in the brain. Indeed, our results reveal that different 

kinds of stressors such as mild handling, exposure to a novel environment and needle 

injection cause a significant increase in DA release in the cortex (mPFC and 

retrosplenial cortex) and hippocampus but failed to increase DA levels in the 

striatum/NAc (Fig. 4A,B,E,F). Several studies have shown a small increase in the DA 

levels after stressful stimuli in the NAc (Cenci et al. 1992, Feenstra et al. 1998, Inglis 

and Moghaddam 1999). In this study, only mild stressors were used, which might partly 

explain the lack of increase of DA levels in the NAc and also the fact that mice were 

used in this study whilst the former studies used rats.  

 

However, accumbal NA release was markedly increased after saline injection in WT 

mice. It is possible that NA projections to the NAc are more readily activated by the 

mild and short-lived stressors than the DA projections. In addition, the mildly stressful 

stimuli such as handling and novelty elicited an even higher response of NA release in 

the striatum/NAc than in the mPFC and hippocampus in mice in Study I. One possible 

explanation for the high sensitivity of accumbal NA to mildly stressful stimuli is the 

fact that NAc shell receives its noradrenergic projections mainly from the nucleus 

tractus solitarius (A2 group), a region that is intimately involved in pain and autonomic 

control (Delfs et al. 1998). Other possibly explanations for the different responsiveness 

of DA and NA systems to the stressful stimuli, such as DA reuptake by NET, are 

discussed in the next chapters. 

 

6.2. ALPHA2-ADRENOCEPTOR SUBTYPES AND DOPAMINE 

NEUROTRANSMISSION 

6.2.1. Alpha2-adrenoceptor subtypes and the regulation of dopamine release in the 

medial prefrontal cortex (II)  

The PFC possesses both α2A- and α2C-ARs (Holmberg et al. 2003, Lee et al. 1998, 

Nicholas et al. 1993, Scheinin et al. 1994). Previous in vitro slice preparation studies 

indicate that α2A-ARs function as the predominant subtype in the brain and are the main 
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regulator of presynaptic autoinhibition of NA release in the CNS (Trendelenburg et al. 

1999, Trendelenburg et al. 2001a, Trendelenburg et al. 2001b). On the other hand, α2A-

ARs mediate also most of the heteroceptor function in the CNS (Gobert et al. 1998, 

Scheibner et al. 2001, Trendelenburg et al. 1994). However, the importance of α2C-ARs 

has also been highlighted in the regulation of NA and DA release in the PFC (Hein et al. 

1999, Scheibner et al. 2001). So far, the in vivo studies have been restricted to animals 

with an unaltered genetic background and drugs that lack real subtype selectivity for α2-

ARs. In this study we investigated the role of the α2A-AR subtype on the regulation of 

DA and NA release in the mPFC in a mouse line lacking a functional α2A-AR subtype. 

 

Interestingly, the basal extracellular levels of DA and NA did not differ between α2A-

AR KO and WT mice in the mPFC. The failure to express the α2A-AR subtype, the 

main presynaptic regulator of NA release, would have been expected to increase NA 

and also DA levels in the mPFC. On the other had, the loss of α2A-AR subtype resulted 

in increased levels of MHPG, the main metabolite of NA, in the cortex measured from 

brain homogenates (Lähdesmäki et al. 2002). Also, in the same study, the NA turnover 

was increased in the cortex, whereas no significant differences were found in the DA 

turnover. Even though our results do not support the theory that lack of α2A-AR has an 

effect on baseline release of NA or DA in the mPFC in the resting condition, the 

findings should be interpreted with care. The use of in vivo microdialysis technique with 

the special zero flow or no-net-flux method would be needed to give a more reliable 

estimate for the baseline levels of NA and DA in the mPFC in α2A-AR KO and WT 

mice. 

 

The highly specific α2-AR agonist, DMT, concentration-dependently decreased both 

NA and DA release in the mPFC in the WT mice, which is consistent with the previous 

studies where other α2-AR agonists were used in rats (Dalley and Stanford 1995, Gobert 

et al. 1997, Gobert et al. 1998, Gresch et al. 1995, van Veldhuizen et al. 1993). The 

concentration-response curve of DMT indicates that NA release is almost entirely 

regulated by α2A-ARs in the mPFC, whereas the role of α2C-ARs is minor in this regard. 

On the other hand, α2C-ARs seem to have a more prominent role in the regulation of DA 

 



66 

release in the mPFC. Indeed, our results reveal that both α2A-ARs and α2C-ARs regulate 

DA release at the terminal level in the mPFC. The maximum reduction of DA release 

was 50 % of the baseline level, and 40 % of this DMT-induced (10-8 M) effect was 

accounted for by α2A-ARs and 60 % by α2C-ARs. On the other hand, the maximum 

reduction of NA release was 80 % of baseline level and 75 % of this effect was 

mediated by α2A-ARs and only 25 % by α2C-ARs.  

 

These results are in line with the electrophysiological findings that both α2A- and α2C-

ARs mediate auto- and heteroceptor function in the cortex (Gobert et al. 1998, 

Scheibner et al. 2001, Trendelenburg et al. 1994, Trendelenburg et al. 1999, 

Trendelenburg et al. 2001a). However, this interpretation is complicated by the findings 

that DA in cortex may be regulated by NA uptake sites and even be directly released 

from NA terminals. Indeed, specific NET blockers elevate extracellular DA levels 

effectively in the PFC but not in the caudate nucleus, which provides evidence that the 

NET is involved in clearing DA in the PFC in rat (Carboni et al. 1990, Gresch et al. 

1995, Mazei et al. 2002, Moron et al. 2002, Pozzi et al. 1994, Yamamoto and Novotney 

1998). On the other hand, it has been hypothesized that DA and NA are co-released 

from NA neurons since the extracellular DA levels in the parietal and occipital cortices 

are only modestly lower than in the mPFC, where DA innervation is known to be much 

denser, and that drug treatments that modify mainly noradrenergic activity modulate 

also extracellular DA levels in these cortical areas. (Devoto et al. 2001, Devoto et al. 

2002, Devoto et al. 2003, Devoto et al. 2004). This hypothesis is mainly based on the 

evidence that α2-agonists reduce both DA and NA levels and α2-antagonists increase 

both DA and NA levels in cortical areas. However, it is possible that DA has a greater 

possibility to be taken up by NET when the α2-agonist reduces the release of NA. 

Likewise, the α2-antagonist-induced increase of NA levels might cause a parallel 

increase in the DA concentration due to competition of the same transporter (Carboni 

and Silvagni 2004). Nevertheless, our finding that the maximum effect of DMT (10-8 

M) was a 80 % reduction of NA release and only a 50 % reduction of DA release 

suggests that the regulation of DA can be independent of NA release in the mPFC. 
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Interestingly, the peak DA release was almost entirely controlled by α2A-ARs when the 

local infusion of α2-agonist, DMT, was repeated during handling-induced stress. In fact, 

the peak release of DA during the second handling episode under the influence of DMT 

was markedly lower than during the first, predrug, handling episode in the WT mice, 

whilst no such reduction was observed in the α2A-AR KO mice. One possible 

explanation for the more pronounced role of α2A-AR in the stressful situation compared 

to the resting condition could be the difference between the abilities of α2A- and α2C-

ARs to regulate DA release under conditions where extracellular levels of DA are either 

low or high. Indeed, electrophysiological stimulation of occipito-parietal cortex and 

heart slices has demonstrated that α2C-AR mediates autoinhibition by low frequency 

stimulation, whilst α2A-AR operates to inhibit NA release after high frequency 

stimulation (Hein et al. 1999, Scheibner et al. 2001). 

 

6.2.2. Alpha2-adrenoceptor subtypes and the regulation of dopamine release in the 

nucleus accumbens (III) 

Several studies indicate that NA projections can regulate dopaminergic activity in the 

NAc via α2-ARs (de Villiers et al. 1995, Murai et al. 1998, Russell et al. 1993, 

Whittington et al. 2001, Yavich et al. 1997). The in vitro slice preparation studies 

suggest that α2-ARs are able to regulate DA release at the terminal level of the NAc as 

evidenced by the decrease of DA release by locally applied α2-agonists (de Villiers et 

al. 1995, Russell et al. 1993). However, in our study where in vivo microdialysis were 

used in conscious mice, no effect on the DA release could be seen after a local infusion 

of the α2-agonist, DMT, whereas there was a clear decrease in NA levels in the NAc. 

These discrepant results may derive from the use of rats in the earlier in vitro studies 

and mice in this study. However, studies using systemic administration of α2-agonists 

have yielded consistent results in rats and mice (Murai et al. 1998, Whittington et al. 

2001, Yavich et al. 1997). Therefore, it is more likely that in vitro and in vivo models 

measure different aspects of monoamine release. Indeed, one notable difference is that 

in vitro slice studies have measured stimulated release of DA whereas our experiment 

with reverse microdialysis measured baseline release. Also, the released 
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neurotransmitter is diluted into the perfusate in in vitro models whereas in in vivo 

methods the neurotransmitter is recycled back to the cell from the extracellular space. 

 

Interestingly, all effects of α2-agonist, DMT, on accumbal DA and NA release, whether 

local or systemic, were absent in α2A-AR KO mice. Indeed, the local administration of 

the α2-agonist, DMT, markedly inhibited the release of DA in the mPFC but was 

without effect in the NAc. Furthermore, an almost 50 % decline in the DA levels 

occured in the α2A-AR KO mice, evidence in favour of a α2C-ARs in the mPFC. In 

comparison to these findings, the absence of α2C-ARs mediated regulation of 

monoamine release in the NAc is surprising, especially as NAc is among the brain areas 

with the densest distribution of α2C-AR subtype in the mouse CNS (Dossin et al. 2000, 

Holmberg et al. 2003). It is worth noting, however, that lack of α2C-ARs has been 

reported to augment and an overexpression of these receptors to decrease the locomotor 

response to amphetamine (Sallinen et al. 1998). Therefore, it is possible that α2C-ARs 

play a role in the control of excessive accumbal DA release under strong stimulation 

conditions. There are several mechanisms by which systemic but not local 

administration of α2-agonist may inhibit DA release in the NAc. These possible 

interaction sites have already been discussed in the review of the literature. On the other 

hand, the locally infused DMT concentration-dependently decreased NA levels in the 

NAc in WT mice but was without effect in α2A-AR KO mice emphasizing the almost 

exclusive role of α2A-AR subtype in the regulation of NA release in the terminal level of 

NAc.  

 

The locally administered α2-antagonist, ATZ, had no effect on DA and NA release in 

the NAc. This observation is consistent with an earlier in vivo microdialysis study 

(Hertel et al. 1999) that reported enhanced DA release in the PFC in rats after locally 

administered α2-antagonist, idazoxan, but found no effect on the DA release in the NAc. 

Also a recent in vivo voltammetry study in rats (Yavich et al. 2003) reported that ATZ 

treatment has no effect on its own on DA release in the NAc in response to stimulation 

of the medial forebrain bundle, but it enhanced the effect of L-DOPA. Interestingly, NA 

levels remained elevated for 1 hour in WT mice after systemic injection of ATZ while 
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in α2A-AR KO mice NA levels returned soon back to baseline. Collectively, these 

findings support the notion that α2-AR autoreceptor mediated control of NA release 

plays a minor role during baseline release of the neurotransmitter. It is possible that only 

when the capacity of reuptake and metabolizing enzymes is exceeded, is there enough 

neurotransmitter in the synapse to activate the α2-AR autoreceptors. Under such 

conditions of stimulated release, blockade of α2-AR autoreceptors could prolong the 

action of NA.  

 

6.2.3. Differences in the regulation of dopamine release in the medial prefrontal cortex 

and the nucleus accumbens by alpha2-adrenoceptors 

Taken together, our results indicate that DA release is differently regulated in the mPFC 

and NAc by α2-ARs. In the mPFC, both α2A-ARs and α2C-ARs regulate DA release in 

the condition when the animal is at rest. However, during stimulated DA release such as 

occurred during handling of the animal, α2A-ARs seems to the main regulator of DA 

release in the mPFC. On the other hand, our results suggest that α2-ARs do not regulate 

DA release locally at the terminals in NAc. However, α2A-ARs regulate DA release in 

the NAc indirectly by their effect on DA neurons in VTA via some yet unknown 

mechanism. 

 

6.2.4. Alpha2-adrenoceptors and the modulation of locomotor activity (III) 

The effects of systemic injections of DMT on monoamine release in the NAc and on 

exploratory activity were parallel to each other as the time courses of the drug actions 

were markedly similar. There is a well-documented connection between the extent of 

DA release in the NAc and spontaneous or psychostimulant-induced locomotion (Fink 

and Smith 1980, Sharp et al. 1987, Steinpreis and Salamone 1993). On the other hand, 

forced locomotion in a running wheel does not increase accumbal DA when measured 

using in vitro microdialysis, although it leads to an increase in DOPAC levels (Damsma 

et al. 1992). Therefore, it is unlikely that reduced locomotion by some mechanisms 

independent of the NAc resulted in dose-dependent decrease of accumbal DA release 

after DMT administration, especially as during the microdialysis experiment, mice were 
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immobile for most of the time. Therefore, it is more likely that DMT inhibited the 

release of accumbal DA, which leads to decreased spontaneous locomotion. Thus, DMT 

may act on the α2-AR autoreceptors on noradrenergic terminals impinging upon the 

VTA and/or PFC. An interaction at the level of the PFC is supported by a recent finding 

that locomotor hyperactivity by systemic administration of amphetamine is prevented 

by blockade of α1-ARs (probably α1B-ARs) in the PFC by local microinfusion of 

prazosin (Auclair et al. 2002, Darracq et al. 1998). In this study, the effects of DMT on 

both accumbal DA release and spontaneous locomotor activity were totally absent in 

α2A-AR KO mice, highlighting the predominant role of α2A-AR auto- and heteroceptors 

in this regulation. Thus it is possible that α2A- and α1B-AR at least partially regulate the 

same synaptic contacts, such that α2A-ARs are presynaptic and α1B-ARs postsynaptic.  

 

The systemic administration of ATZ also had parallel effects on accumbal monoamine 

release and spontaneous locomotion. Locomotor activity gradually decreased during the 

locomotor activity task as the environment became familiar to the mice. However, mice 

treated with ATZ maintained a high level of locomotion for a longer time than vehicle 

treated mice. Interestingly, the effect of ATZ was seen only on NA release but not on 

DA release in the NAc. One likely explanation for this apparent discrepancy is the fact 

that the situation in the microdialysis experiment was different than that in the 

exploratory task. The injection stress selectively increased accumbal NA release, which 

was prolonged by the treatment of ATZ. On the other hand, exposure to a new 

environment was likely to result in increased activity of both monoamine systems, and 

prolonged NA release by the α2A-AR autoreceptor blockade by ATZ resulted in 

sustained accumbal DA release and concomitant locomotor activity.  

 

6.3. NMDA-RECEPTOR ANTAGONIST MEDIATED REGULATION OF 

DOPAMINE NEUROTRANSMISSION IN THE RETROSPLENIAL CORTEX (IV) 

Previous research on the glutamate-dopamine interaction has focused on the prefrontal 

cortex and basal ganglia, although the DA system is more widespread in the brain 

(Descarries et al. 1987, Gaspar et al. 1989). Notwithstanding some controversial 

findings, the NMDA receptor antagonists, phencyclidine and ketamine, do not induce 
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notable DA release in the striatum in animals (Adams et al. 2002, Verma and 

Moghaddam 1996) or in humans (Aalto et al. 2002, Kegeles et al. 2000, Kegeles et al. 

2002). The glutamate-dopamine interaction is likely to be different in the cortical 

regions, as NMDA antagonists have been reported convincingly to induce DA release in 

the rat frontal cortex (Adams and Moghaddam 1998, Lindefors et al. 1997, Lorrain et al. 

2003, Verma and Moghaddam 1996). The results of this study indicate that ketamine 

does increase extracellular DA concentrations also in the retrosplenial cortex in rats.  

 

The functions of the posterior cingulate/retrosplenial cortex are poorly known at 

present, but animal studies indicate that it is an important location for spatial learning 

(Cooper et al. 2001, Vann and Aggleton 2002) and also the most sensitive brain region 

for the NMDA receptor antagonist-induced neurotoxicity in rats (Olney and Farber 

1995). In humans, lesions in the right cingulate/retrosplenial cortex have been related to 

topographical disorientation (Katayama et al. 1999), and imaging studies have reported 

bilateral activation of the retrosplenial cortex to be associated with navigation (Maguire 

2001) and spatial attention (Mesulam et al. 2001). 

 

The microdialysis findings in rats indicate that ketamine increases extracellular DA 

levels in the retrosplenial cortex. Although there are known species differences in 

cortical DA innervation patterns, this microdialysis observation support the role of an 

increased synaptic DA concentration underlying the PET findings. At subanesthetic 

doses (below 0.5 mg/kg), ketamine is known to be relatively selective for the NMDA 

receptor (Javitt and Zukin 1991). Ketamine has some affinity for the DAT in vitro but 

only at micromolar concentrations (Nishimura and Sato 1999). Moreover, a direct effect 

on D2 receptors (Kapur and Seeman 2001) is unlikely, as such an effect should have 

been evident in the three recent PET/SPECT experiments using ketamine intervention 

(Aalto et al. 2002, Kegeles et al. 2000, Kegeles et al. 2002). Thus, the ketamine-induced 

increase in DA concentration is the most probable explanation for the decreased D2/D3 

receptor ligand [11C]FLB 457 binding in the limbic posterior cingulate cortex, although 

other indirect mechanisms, such as agonist-mediated D2 receptor internalization cannot 

fully be excluded (Laruelle 2000). Cortical glutamatergic afferents project to the VTA 

and synapse directly onto VTA dopaminergic neurons that reciprocally connect with 
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glutamatergic pyramidal neurons, at least in the PFC (Sesack et al. 2003). Thus, 

disruption of the glutamatergic corticofugal control over DA release is the most 

plausible neuroanatomical hypothesis for these findings (Carlsson et al. 1999, Moore et 

al. 1999, Sesack et al. 2003). 
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7. CONCLUSIONS 

These data demonstrate that in vivo extracellular concentrations of DA in the mouse 

brain reflect neuronal release and are sensitive to activation by unconditioned stimuli 

such as handling, novel environment and injection stress. The dopaminergic system 

exhibited regional differences in the response to the stressful stimuli, as mPFC, 

hippocampus and retrosplenial cortex were sensitive to mildly stressful stimuli, whereas 

striatum and NAc were unresponsive. However, a robust increase in the extracellular 

levels of NA was seen also in the striatum and NAc after stressful stimuli. 

 

In general, α2A-AR seems to be the main regulator of both DA and NA release in the 

mPFC and NAc, especially during stress. Nevertheless, α2C-ARs have an important role 

in the regulation of DA release in the mPFC in rest. In NAc, α2A-ARs regulate NA but 

not DA release at the terminal level, but do regulate DA release indirectly through their 

effect on DA neurons in the VTA. 

 

The α2-AR agonist, DMT, and the antagonist, ATZ, mediate their effect on locomotor 

activity via α2A-ARs.  

 

The non-competitive NMDA-antagonist, ketamine, markedly increased DA release in 

the retrosplenial cortex in rats. This finding indicates that a functional dopaminergic 

system also exists in the posterior region of the rat brain, and supports the idea that the 

altered DA binding in posterior cortical areas in response to ketamine in human 

volunteers in the parallel PET study indeed reflects increased dopamine release. 
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