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ABSTRACT

The cholinergic system of the basal forebrain plays a pivotal role in cognitive
functions such as arousal, attention, learning and memory. In aging, a decline in sensory and motor
performance can be accompanied by cognitive deficits. Gradual deterioration of cognitive abilities
and development of memory impairment are essential criteria to characterize dementia. Most
demented individuals are victims of Alzheimer's disease (AD). The deterioration of the cholinergic
function has been recognized as one of the key factorsin the AD etiology.

The prevalence of AD was reported to be higher among women than among men.
Loss of gonadal hormones in women after the menopause is believed to contribute to the
development of AD. Therefore, hormone or estrogen replacement therapies (ERT) were considered
to play asignificant role in AD prevention. This hope was based on in vitro and in vivo studies that
showed a wide range of estrogenic effects on the survival, structure and function of neurons. In
addition, estrogen was shown to influence the formation of beta-amyloid (Ab) that is an
indispensable feature of AD pathology. The findings that the cholinergic neurons of the basal
forebrain express estrogen receptor apha (ERa) provided an anatomical substrate for the estrogen
action on this neurotransmitter system.

In the present study we aimed to investigate whether the modulation of estrogen status
affects the number of cholinergic neurons in the basal forebrain nuclei, their content of ERa and Ab
accumulation in rodents. The numbers of choline acetyltransferase (ChAT)-immunoreactive (ir)
neurons of adult rats, aged mice and transgenic AD mouse model were estimated using stereology.
The results revealed that the depletion of estrogen upregulates the percentage of ChAT-ir cells that
contain ERa-ir in aged mice. Moreover, the number of ChAT-positive neurons containing ERa-ir in
the cell nucleus was significantly lower at 12 months than at 6 months of age. Neither ovariectomy
nor ERT affected Ab plague counts in transgenic mice of AD.

The results of this series of studies suggest that changes in estrogen status influence
the presence of ERa in the cholinergic neurons of the rodent basal forebrain even at old age.
Furthermore, age per se could be a detrimental factor that independently from estrogen status
modulation and genetic background regulates the intracellular distribution of ERa in mice. This
knowledge is important for future therapeutic strategies targeting ERs and its intracellular transport
factors.

National Library of Medicine Classification: WT 155, WP 522

Medical Subject Headings. Alzheimer disease/etiology; prosencephalon; neurons; neurotransmitter
agents; estrogens; estrogen receptor alpha; amyloid beta-protein; choline o-acetyltransferase; rats;
mice; animals, genetically modified
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1. Introduction

The cholinergic system of the basal forebrain consists of four overlapping cell groups:.
medial septum (MS), vertical (VDB) and horizontal (HDB) limbs of the diagonal band of Broca and
nucleus basalis magnocellularis (NbM). The common feature of all cholinergic neurons is their
content of acetylcholine as neurotransmitter and its synthesizing enzyme choline acetyltransferase
(ChAT). The brain cholinergic system is involved in a number of cognitive functions including
arousal, attention aswell as learning and memory. In Alzheimer's disease (AD), the selective loss of
cholinergic neurons and their cortical markers (Arendt et al., 1983; Davies and Maloney, 1976;
Whitehouse et al., 1981; Whitehouse et al., 1982; Bowen et al., 1976; Perry et al., 1977) are the
most consistent and severe neurochemica deficits. Furthermore, a correlation was shown between
the reduction of cortical cholinergic markers and cholinergic cell loss in the NbM and pre mortem
mental status scores in individuals having senile dementia (Perry et al., 1978). After these findings,
AD was hypothesized to be a disorder of one neurotransmitter system similarly as Parkinson's
disease. This led to the development of drugs that could alleviate cholinergic deficits. However,
later studies showed that AD is far more complex than it was thought before. Although, the
cholinesterase inhibitors were able to enhance cholinergic neurotransmission, the treatment had
rather modest effect on the disease progression. New treatment strategies for AD became necessary.
For many years estrogens were known as “female” hormones that produce their main effects in the
female reproductive tissues. However, later on, the use of tritium-labeled steroid hormones reveal ed
estrogen-containing cells in the brain (Pfaff and Keiner, 1973). Moreover, a wide distribution of
estrogen receptor alpha (ERa) and ER beta (ERb) was found throughout the rostral-caudal extent of
the brain and spinal cord (Shughrue et al., 1997). In parallel, emerging evidence from experimental
in vivo and in vitro studies suggested multiple effects of estrogens on cells. Estrogens were shown
to have neurotrophic (Toran-Allerand et al., 1999), neuroprotective (Dubal et al., 1999; Hawk et al.,
1998), anti-apoptotic effects (Brusadelli et al., 2000; Garcia-Segura et al., 1998; Garnier et al.,
1997), antioxidative properties (Behl et al., 1997; Green et al., 1998) and even have the ability to
inhibit the formation of toxic beta-amyloid (Ab) (Jaffe et al., 1994; Xu et al., 1998). Furthermore,
the higher incidence rate of AD among women than men was demonstrated in population-based
prospective cohort studies (Andersen et al., 1999; Fratiglioni et al., 2000). The decline in estrogens
levels in postmenopause was considered one of the main risk factors contributing to the memory
decline in women. In light of multiple positive findings from experimental studies, estrogen (ERT)

and hormone (HRT) replacement therapies were thought to have a potential to delay the progression



16

of memory disorders a old age. However, the findings from epidemiological data were inconsistent
with such conclusions (Hogervors et al., 2000). Finally, the first large-scale double blinded clinical
trial reported findings where the benefit of taking ERT was outweighed by the increased risk of
stroke, myocardial infarction and venous thrombolism in healthy postmenopausal women (Rossouw
et a., 2002).

At the time this study was started, there was an overall optimism regarding the
pharmacological properties of estrogen actions in the central nervous system. Therefore, this study
was designed to evaluate the effects of estrogen status on the number of cholinergic neurons in the
rodent basal forebrain using immunohistochemistry. The goal of this study was also to investigate
the presence of ERa in cholinergic neurons. In order to get an unbiased estimation of neuronal
numbers, the stereological method was applied. Different animal models were used in this study:

adult rats and mice, aged mice, and a transgenic mouse model of AD.
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2. Review of theliterature

2.1 The cholinergic system of the central nervous system

2.1.1 Anatomy of the cholinergic system

The presence of cholinergic neurons in the basal forebrain was originally reported by
Shute and Lewis in 1967 and later confirmed by others (Hartig et al., 2002; Semba, 2000;
Zaborszky et a., 1999). Inthe early 1990's, Mesulam introduced a Ch classification to designate the
groups of cholinergic neurons (Mesulam et al., 1983a,b). As this classification was based on the
topographical variations of cholinergic cell groups and their particular cortical and subcortical
targets, it has been widely used. The cholinergic system is divided into eight groups of cholinergic
cells (Ch1-Ch8). At the most rostra level of the basal forebrain, cholinergic cells are located in the
MS and VDB nuclei. These cell groups are designated as Chl and Ch2. In rodents, 30-50% of MS
and 50-75% of VDB cells are cholinergic (Mesulam, 1994; Wainer and Mesulam, 1990), whereas
in primates and humans these percentages are 10 and 70, respectively (Mesulam et a., 1983b;
Mesulam, 1994; Mufson et al., 1989). The strip of cellsthat extends towards a horizontal axisand is
situated ventrolaterally to the Ch2 congtitutes the nucleus of HDB or Ch3. In rodents, 10-20% of
cells are ChAT-positive (Wainer and Mesulam, 1990). In primates, only 1-2% of cells can be
described as cholinergic (Mesulam, 1994). The neocortex and amygdala as well as reticular nucleus
of thalamus are innervated by the Ch4 group of cells that is found within the NbM (Mesulam,
1994). That is the largest group of cholinergic neurons of the basal forebrain in rodents, primates
and humans. Approximately 90% of cells in NbM are cholinergic (Mesulam, 1994; Wainer and
Mesulam, 1990). Immunohistochemical and in situ hybridization studies showed that the main
congtituent of the non-cholinergic part of basal forebrain cholinergic nuclei is a gamma
aminobutyric acid (GABA)-containing population of cells (Gritti et al., 1994; Smith and Booze,
1995; Semba, 2000).

The Ch5-Ch8 groups of cholinergic cells are situated in the brainstem. The Ch5 and
Ch6 groups of cells are located in the pedunculopontine tegmental and laterodorsal tegmental
nuclei, respectively. In human brain nearly all (approximately 90%) neurons situated in the
pedunculopontine nucleus (pars compacta) are ChAT-immunopositive. Remaining neurons are
mainly catecholaminergic in that they are tyrosine hydroxylase-immunopositive. The laterodorsal

tegmental nucleus has relatively pure proportion of ChAT-positive cells with small amounts of



18

GABAGergic, glutamatergic and catecholaminergic neurons (Mesulam, 1994; Wainer and Mesulam,
1990; Tohyama and Takatsuji, 1998). The medial habenular nucleus contains the Ch7 group of the
cholinergic neurons. Approximately 80-90% of cells in the parabigeminal nucleus also stain for
ChAT and are defined as Ch8 group (Mesulam, 1994; Wainer and Mesulam, 1990).

In terms of functional neuroanatomy, all cholinergic nerve cells described above are
projecting neurons. In addition, some ChAT-containing interneurons were reported in the caudate-
putamen nucleus, nucleus accumbens, olfactory tubercule and islands of Calleja complex, cerebral
cortex, olfactory bulb and hippocampus (Butcher, 1995; Lauterborn et al., 1993; Oh et al., 1992;
Zaborszky, 2002). The precise function of these cellsis largely unknown.
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Figure 1. Schematic drawing of the cholinergic nuclei in the rat basal forebrain: (A) medial septum
(red color) and the vertical diagonal band of Broca (blue), (B) horizontal diagonal band of Broca,
(C) nucleus basalis magnocellularis, (D) pedunculopontine tegmental (red), laterodorsal tegmental
(yellow), medial habenular (black), and parabigeminal (brown) nuclei. The drawings were made
using Neurolucida software (MicroBrightField Inc., USA) for serial section reconstruction with the
aid of arat brain atlas (Paxinos and Watson, 1998).
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2.1.2 Target areas of cholinergic innervation

Brain areas that are innervated by cholinergic neurons were revealed using tract-
tracing methods in rodents and primates combined with acetylcholinesterase (AChE) enzyme
histochemistry and ChAT immunohistochemistry. Due to ethical restrictions, these types of
experiments could be not applied to sudy cholinergic innervation in the human brain. However,
data on post mortem human tissue indicated that the organization of the cholinergic innervation in
humans and non-human primates is largely identical (Mesulam, 1994).

The most rostral parts of the cholinergic cell groups in the basal forebrain, Chl and
Ch2, innervate the hippocampus (Mesulam, 1994; Wainer and Mesulam, 1990). AChE-rich
cholinergic fibres are seen within CA2, CA3 and CA4 regions of the hippocampal proper, in the
inner part of the molecular layer of the dentate gyrus, and in the subiculum. Ch3 provides the major
source of cholinergic innervation to the olfactory bulb. Cerebral cortex receives cholinergic
innervation from the largest group of cholinergic cells in the basal forebrain that is situated in the
NbM and is referred to as Ch4. The human Ch4 complex is subdivided into 6 sectors. anteromedial,
anterolateral, anterointermediate, intermediodorsal, intermedioventral, and posterior. Different Ch4
parts project to different cortical areas. Studies in the monkey brain revealed that anteromedial part
provides the major source of cholinergic innervation to medial cortical areas including the cingulate
gyrus, anterolateral-to the frontoparietal region and the amygdaloid nuclei; intermediodorsal
together with intermedioventral-to the laterodorsal frontoparietal, peristriatal and midtemporal
regions; and posterior-to the superior temporal and temporopolar areas (Mesulam, 1994). Despite
major differences in the overall density of cholinergic axons among different cytoarchitectonic
areas, the cholinergic innervation of primary sensory and unimodal association areas is weaker than
that of the paralimbic and limbic areas. Cholinergic cortical innervations also display some target
layer specificity. Taken together, the density of cholinergic axonsis higher in layers|, Il aswell as
the upper parts of layer 111 in the cerebral cortex (Mesulam, 1994).

Both Ch5 and Ch6 send their main projections to the thalamus (Mesulam, 1994). In
addition, there is evidence that Ch5 and Ch6 may innervate also the cerebral cortex, basal forebrain,
and extrapyramidal structures such as the striatum, globus pallidus, subthalamic nucleus and
substantia nigra. In summary, the functional distinction between these nuclel could be formulated as
follows. Ch5 more participates in sensory processing and extrapyramidal motor control, whereas
Ch6 is more closely related to the limbic system (Mesulam, 1994).
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2.1.3 Acetylcholine and the cholinergic synapse

In contrast to most known neurotransmitters acetylcholine (ACh) is not a derivative of
the amino acid metabolism (Bear et al., 2001). ACh is derived from acetyl coenzyme A which is a
ubiquitous product of cellular respiration in mitochondria, and choline, which plays an important
role in fat metabolism and is transported to the brain both free and in phospholipid form via blood
(Bear et a., 2001). ACh synthesis requires a specific enzyme, ChAT, which is synthesized on
ribosomes located in the soma of neurons and transported to the axon terminal. The transmitter
ACh, in turn, is synthesized by ChAT in the cytosol of the axon terminal, and concentrated in
synaptic vesicles by the vesicular acetylcholine transporter (VACHT; Erickson et al., 1994; Weihe
et a., 1996). After ACh isreleased into synaptic cleft as a result of an action potential, it binds to
ACh receptors that can be located on both pre- and post-synaptic membranes. Remaining ACh is
removed from the synaptic cleft by a speciaized enzyme, AChE. AChE converts ACh into acetic

acid and choline, which is returned back to the presynaptic cell by a reuptake process.
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Acetyl-Co
Choline

Nerve terminal

Putative choline transporter
| Cholinesterase | ACh

/ ‘ Synaptic Cleft‘
Choline

ACh receptor

ACh receptor

Figure 2. Schematic drawing of the cholinergic nerve terminal. Ach, acetylcholine; ChAT, choline
acetyltransferase; VAChT, vesicular acetylcholine transporter (adapted from Oda, 1999).
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2.1.4 Acetylcholine receptors

Acetylcholine receptors in the mammalian nervous system are divided into two
groups. muscarinic and nicotinic. They were named based on the ability of the natural alkaloids,
nicotine and muscarine, to mimic the effects of ACh as a neurotransmitter.

Muscarinic receptors are coupled to G proteins and either act directly on ion channels
or are linked to a variety of second-messenger systems (Ehlert et al., 1994). They predominate in
the mammalian cerebral cortex. To date, five muscarinic receptors (M1-M5) have been identified
using molecular biology techniques. It is unclear whether a specific subtype of muscarinic receptors
represents a unigue function. However, it is known that stimulation of muscarinic receptors M1, M3
and M5 activates different ion channels as well as phospholipases (A2, C and D). That eventually
leads to activation of different second messenger systems. The activation of muscarinic M2 and M4
receptor subtypes reduces the levels of cyclic adenosine monophosphate (CAMP) through the
inhibition of adenylate cyclase (Ehlert et a., 1994; Felder, 1995). Muscarinic receptors can be
located on both pre- and post-synaptic membranes. Furthermore, approximately 30% of pyramidal
neurons of the cerebral cortex of layers1il and V display immunoreactivity for both muscarinic and
nicotinic ACh receptor subtypes (Schroder et al., 1989). Although different muscarinic receptor
subtypes are present throughout the whole brain, their proportions vary in different regions. For
example, in the cerebral cortex, M1 receptors are more numerous than M2. Additionally, M1
receptors dengity is at its highest in the limbic area and the association cortices. In contrast, M2 is
more prevalent in primary sensory and motor areas of cortex (Mash et al., 1988). Furthermore, M1
receptors constitute 40-60% of all muscarinic receptor subtypes in the neocortex and the
hippocampus;, M2 is predominant in the basal forebrain, midbrain, medulla, pons region and
cerebellum, whereas M4 is most abundant in the corpus striatum (Ehlert et al., 1994; Felder, 1995).
M3 and M5 receptors are expressed at low levels in the brain.

Nicotinic cholinergic receptors belong to the group of ligand-gated ion channel
receptors. They are composed of four different subunits (o, b, d and g), with a stoichiometry of two
a subunits and one each of the other three subunits. In addition, multiple isotypes of each subunit
type exist which are the products of individual genes. Therefore, there are a large number of
possible subunit subtype compositions for nicotinic ACh receptor. Thisisreflected in the fact that at
least nine different functional nicotinic receptors have been identified. They are expressed in
cerebral cortex, thalamus, hippocampus, hypothalamus, interpeduncular nucleus and the superior
colliculus (Arneric et a., 1994). However, little is known regarding the physiological role of most

of these receptors in the central nervous system.
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2.1.5 Functional implications of the cholinergic system

The cholinergic neurotransmission covers broad aspects of cortical function because
of intense cholinergic innervation from the Ch1-Ch4 groups. Acetylcholine may exert complex
effects in the cerebral cortex. For example, it may have an inhibitory role directly or through the
mediation of GABA-containing interneurons, or affect the cholinoceptive cortical neurons by
causing a prolonged reduction of potassium conductance, which, in turn, makes cholinoceptive
neurons more susceptible to excitatory inputs (Mesulam, 1994). In terms of behavior, cholinergic
neurotransmission is involved in arousal, learning and memory, mood, reward and aggressive
behavior. Experimental studies demonstrated that lesions of Ch1l-Ch4 cell groups or systemic
administration of cholinergic antagonists may disrupt learning and memory processes (Mesulam,
1994). In addition, according to Buzsaki (1989), cholinergic innervation plays a major role in
switching from on-line attentive processing, characterized by hippocampal theta rhythm, to an off-

line period of consolidation, which is characterized by sharp wave activity.

2.1.6 Neurotrophin receptor expression in the cholinergic neurons

The nerve growth factor (NGF) was first described by Levi-Montalcini and Angeletti
(1963) as an important trophic factor in the development and maintenance of noradrenergic
peripheral sympathetic neurons. Later studies showed that NGF may increase ChAT levels in the
cholinergic perikarya in vitro (Hefti, 1986; Martinez-Serrano et al., 1995) and increase ChAT
activity in the basal forebrain, hippocampus, neocortex and neostriatum in vivo (Gnahn et al., 1983).
Under normal conditions, the highest levels of NGF are present in the target fields of the basal
forebrain cholinergic neurons. cerebral cortex, hippocampus and olfactory bulb (Conner and Varon,
1992; Conner et al., 1992). Immunohistochemical studies on primate and human material revealed
that NGF is present in the cholinergic neurons of the basal forebrain (Mufson et al., 1994; Mufson
et al., 1995) and is retrogradely transported from cholinergic cortical terminal to the perikarya
where it may exert its function via NGF receptors. Two classes of NGF cell surface receptors have
been found: (1) the low-affinity neurotrophin receptor with a molecular weight of 75 kDa (p75™' %),
and (2) the high-affinity transmembrane glycoprotein having a cytoplasmic protein kinase domain
(trkA; Bothwell, 1991). Colocalization experiments in non-human primates and humans showed
that 68-73% of all basal forebrain cholinergic neurons coexpressed both p75™ "~ and trkA receptors.
Furthermore, trkA was found in 23-28% of ChAT-immunopositive neurons, whereas 4% of all
basal forebrain cholinergic neurons co-expressed p75™ ', but not trkA (Kordower et al., 1994). The
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functional role of p75"™" receptor is to recruit NGF to the trkA receptor. The trkA receptor has a
capability to activate cellular responses to NGF alone (Riccio et al., 1997).

A body of evidence suggests that NGF and estrogen systems interact within the basal
forebrain cholinergic neuron populations (Muir, 1997). For example, significantly greater levels of
ChAT (Loy and Sheldon, 1987) and p75"™" (Kornack et al., 1991) were detected during early
postnatal development in female than in male rats. Furthermore, estrogen receptors are colocalized
with the low-affinity p75""" in the cholinergic cells (Toran-Allerand et al., 1992). This suggests the
potential trophic effects of estrogens that could be reflected in the developmental differences of
NGF receptor expression in the cholinergic neurons of the basal forebrain.

2.2 Cholinergic system in aging and Alzheimer's disease

2.2.1 Cholinergic systemin aging

Animal studies. The available data on age-related changes in the cholinergic markers

or neuronal counts from the basal forebrain of rodents are inconclusive. Discrepancies between data
in several studies may result from the various methodological and animal species differences. This
may also be compounded by other factors such as different age, gender and strain. For example, a
reduction in size and number of ChAT/NGF receptor-positive cells in the basal forebrain during
aging was reported in one study (Fischer et a., 1992), while swelling of ChAT-immunopositive
neurons and no significant changes in the cholinergic cell numbers of MS and NbM during aging
were observed by other group (Armstrong et al., 1993). Although both these studies were conducted
on rats, the animals were from different inbred strains. Similarly, inconsistent findings were
reported from other cholinergic parameters as well. Significant age-related reductions in ChAT
activity of frontal and cerebral cortices were observed in aged rodents (Sarter and Bruno, 1998).
However, changes in ChAT activity during aging might also be sex-dependent. Luine et al. (1986)
showed that ChAT and AChE activity may differentially decrease in aged male and female rats than
that in young ones.

More consistent results have been reported from sodium-dependent high affinity
choline uptake (HACU) studies. HACU shows the ability of cortical cholinergic synapses to absorb
choline. As a matter of fact, HACU is the rate-limiting step in ACh synthesis. Therefore, this
marker reflects the functional activity of the cholinergic system. Experimental studies showed that
HACU could remain unaltered during aging in rodents (Lebrun et al., 1990; Meyer et al., 1984;
Sirvio et al., 1988).
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Human studies. The analysis of cholinergic markers in human brains post mortem has

also led to contradictory findings. A significantly decreased number of cholinergic cells in the basal
forebrain (Whitehouse et al., 1982) and of cholinergic neurons in the NbM (De Lacalle et a., 1991)
or adecrease in the cortical ChAT activity (Davies and Maloney, 1976) were demonstrated by some
studies, while other groups reported an unchanged number of cholinergic cells in the NbM (Bartus
et a., 1982; Chui et al., 1984) during aging. However, it is necessary to consider that the earliest
age-related changes may occur a the cellular level and be expressed as a loss of cell volume or
number of terminals. Such changes were reported to occur in aged animals. Mesulam et al. (1987)
showed neuronal shrinkage in aged mice despite the unaltered number of basal forebrain
cholinergic neurons. However, the size of neurons or number of their terminals was not investigated
in aged human material. Furthermore, it is not known whether preclinical state of AD, known as
mild cognitive impairment is temporally linked to a further decrement in cholinergic transmission
that could be influenced by the AD pathology alone, but not by age per se. These questions should
be addressed in future studies on aging and the cholinergic system.

2.2.2 Alzheimer's disease

Nearly one hundred years ago, the German neuropathologist and psychiatrist Alois
Alzheimer first described cerebral atrophy, presence of extracellular neuritic plagues and
intracellular neurofibrillary tangles as neuropathological hallmarks in the brain of a demented
patient. Further studies revealed that these neuropathological changes occur initially in the medial
temporal lobe structures such as the entorhinal cortex and hippocampal formation. At later stages,
the pathology extends into other cortical and subcortical regions such as the basal forebrain
cholinergic system (Bondareff et al., 1994; Braak and Braak, 1991; Geula, 1998).

The etiology of AD is heterogeneous. About 50% of early-onset familial AD
individuals, which accounts for 4-8% of all AD cases, have mutations in three genes. presenilin-2
(PS2) on chromosome 1, presenilin-1 (PS1) on chromosome 14, and amyloid precursor protein
(APP) on chromosome 21 (Selkoe, 1991). Additionally, apolipoprotein E is a well established risk
factor for AD, which is found on chromosome 19 (Meyer et al., 1998). Recently, interleukin-1a has
also been identified as arisk factor, which is associated with an earlier onset of AD (Grimaldi et al.,
2000). Other genetic risk factors that could contribute to the early- as well as late-onset AD
development are under investigation, e.g., nicastrin and ERb (Helisalmi et al., 2004; Pirskanen et
al., 2005).
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2.2.3 Cholinergic system in Alzheimer's disease

In 1974, Drachman and Leavitt demonstrated that the blockade of the cholinergic
receptors in young healthy individuals produces a memory deficit, which is similar to that seen in
AD patients (Drachman and Leavitt, 1974). Subsequently, a severe loss (up to 95%) of cholinergic
markers in the cerebral cortex in AD subjects was independently reported by two research groups
(Bowen et al., 1976; Davies and Maloney, 1976). Later studies showed significant decreases (of
varying extents, ranging between 15% and 95%) in the number of cholinergic neurons in the NbM
of AD patients (Arendt et a., 1983; Geula and Mesulam, 1996; Iraizoz et al., 1991; Whitehouse et
al., 1982). Furthermore, the severity of the cholinergic deficits in AD was found to positively
correlate with the severity and duration of the AD (Francis et al., 1999; Perry et al., 1981). This
encouraged the development and introduction of pharmacotherapies that would involve the
cholinergic system modulating agents such as inhibitors of AChE (Orgogozo, 2003). However, the
enthusiasm that cholinergic therapy may be used to eliminate memory and cognitive deficits in
demented patients soon decreased. Clinical trials using these cholinergic drugs showed only modest
improvements and could not restore cognitive function (for review see Trinh et al., 2003). There are
several factorsthat could influence such an outcome. First, cholinergic degeneration is not apparent
in cases with mild cognitive impairment (Davis et al., 1999). These individuals are the main target
group for the disease prevention. Moreover, there is no general brain cholinergic system lesion in
AD (Mesulam, 2004). The cholinergic nuclei in the brainstem remain relatively intact in contrast to
the basal forebrain cholinergic neurons co-expressing p75" ~. Finally, catecholaminergic neurons
show even more prominent losses in activity at early stages of the disease (Zarow et al., 2003) than
cholinergic cells. Therefore, the current treatment strategies that use cholinomimetics at preclinical
or early stages of the disease might prove to be productive when combined with other therapeutic

approaches than when used alone.

2.2.4 Experimental animal models used to study Alzheimer's disease and the cholinergic system

Lesions of the cholinergic nuclei of the basal forebrain in experimental animals.

The hypothesis that cholinergic dysfunction may lead to the development of cognitive disturbances
facilitated a development of animal models that could mimic the loss of cholinergic function which
is observed in AD patients. The selective injury of cholinergic nuclei using excitotoxins was
believed to have the same effects on cognition of animals asin AD subjects. Indeed, the behavioral

deficits are present in animals following cholinergic immunolesion (for review see Muir, 1997).
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However, it was not known whether memory deficits were caused by lesion of cholinergic neurons
or other types of cells (e.g. GABA) that are also located in cholinergic nuclei. Immunolesioning

with the immunotoxin 192 1gG-saporin that selectively kills p758 '~

-bearing cholinergic projection
neurons in the rat basal forebrain (Wiley, 1992) revealed that selective lesion of the septal area
produces no memory deficits (Baxter et al., 1996; Berger-Sweeney et al., 1994; Torreset a., 1994).
Furthermore, lesion models of animals are too restricted in terms of lesion place and are too acute to
mimic AD, where cholinergic deterioration occurs gradually (Mufson and Kordower, 2001). Thus,
the usefulness of such animal models to study pharmacological agents that combat AD pathology is
guestionable (Muir et al., 1993).

Transgenic animal models of AD. After the identification of AD-causing gene

mutations, steps were taken to develop transgenic animal models of AD. These animals, in form of
gene knockouts or insertion of wild-type and mutant transgenes, were supposed to mimic AD
pathophysiology more accurately than animal leson models. Indeed, AD transgenic mouse lines
(see Table 1) show some features of human AD pathology. For example, the deposition of Ab
plaques (Borchelt et al., 1997; Holcomb et al., 1998), a modest loss of neurons (Calhoun et al.,
1998; Takeuchi et al., 2000), loss of synaptophysin staining (Games et al., 1995) or deficits in long-
term potentiation maintenance (Chapman et al., 1999) have been reported in transgenic mice
containing various genes that have mutations associated with human AD. Furthermore, single APP
and double APP/PSL1 transgenic lines show behavioral impairments (Chapman et al., 2001). Robust
changes in ChAT and AChE activity in both the neocortex and the hippocampus were described in
double APPswe/PS1dE9 mice (Savonenko et al., 2005). However, the correlations between
cholinergic markers and episodic-like memory parameters did not reach a corrected significance
level. A recently developed triple transgenic mouse model of AD shows a progressive development
of Ab-containing plaques and hyperphosphorylation of the microtubule-associated protein tau
resulting in tangles deposits in the neocortex and hippocampus (LaFerla and Oddo, 2005; Oddo et
al., 2003).

Taken together, the transgenic mice modeling aspects of AD were demonstrated to be
suitable for studies on AD pathophysiology. Furthermore, they represent important tools for the
development of new strategies for the pharmacotherapy of AD and related neurodegenerative

disorders.
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Table 1. Some transgenic mouse lines developed for the purpose of modeling AD and their

associated pathologies in relation to the human disease.

M ouse mode€

Histopathology/behavioral
impair ments/synaptic
plasticity

Reference

Human APP695 mutant

Amyloid plagues/memory
deficits/LTP deficitsin
hippocampal CA1 and dentate

gyrus

Chapman et a., 1999; Hsiao et
al., 1995; Hsiao et al., 1996

Human APP

Neuronal loss/spatial learning
deficitsNMDA-dependent LTP
deficitsin CA1

Nalbantoglu et al., 1997

Human PS-1 mutant

Increase in Ab 1-42/43
production/increased synaptic
plasticity in CAl

Borchelt et al., 1997

APPG95/PS-1

Ab depositsin neocortex and
hippocampus/memory
deficits/accelerated decay of
LTP

Borchelt et al., 1997; Puolivali
et al., 2002

APPswe/PS1dE9

Ab plague deposition, episodic-
like memory impairments,
somatostatin level deficit in
neocortex, deficitsin
cholinergic markersin

neocortex and hippocampus

Savonenko et al., 2005

APPswe/PS1IM 146V /tauP301L

Deposition of Ab plaques,
neurofibrillary tangles in the
neocortex and hippocampus

Oddo et al., 2003

APP-amyloid precursor protein;

aspartate; Ab-amyloid-b.

PS-presenilin; LTP-long-term potentiation; NMDA-N-methyl-D-
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2.3 Egtrogens and estrogen receptors

A large portion of the basal forebrain cholinergic neurons contain ERS. This gives an
anatomical basis for estrogen actions on cholinergic neurotransmission.

2.3.1 Egtrogens

Estrogens belong to a large family of hormones that are composed of three 6-carbon
rings and one 5-carbon ring and are collectively called steroids (Kawata, 1995). The common
steroid precursor is cholesterol. The latter is synthesized from acetate in all-steroid producing
organs except the placenta. There are three forms of secreted estrogens. estradiol, estrone and estriol
(Kawata, 1995). The most potent of estrogens is estradiol, whose potency is 12 times higher than
that of estrone and 80 times that of estriol (Kawata, 1995). However, all of these hormones have a
common precursor androgen. In the non-pregnant female, the majority of circulating estrogens is
secreted by the ovaries. During pregnancy, the placenta becomes the main source of estrogenic
hormones. In males, estradiol is synthesized from testosterone, but in a quantitatively lower amount
(Speroff et al., 1982).

The main function of estrogens in the peripheral tissues of females is to trigger
cellular proliferation and growth of the tissues related to reproduction, e.g. in sex organs. Most
functions of estrogens are exerted through ERs that function as ligand-dependent transcription
factors (Nilsson et a., 2001).

2.3.2 Egtrogen receptors and their actions via genomic and non-genomic pathways

The receptors for estrogen are members of a large family of transcription factors,
which also includes receptors for other steroids such as thyroid hormone and dihydroxyvitamin D3
(Bloom and Kupfer, 1995). To date, two types of ERs are known: ERa and ERb (Nilsson et al.,
2001). As with most other transcription factors of this class, both ERs contain a highly conserved
DNA binding domain, consisting of two Zinc finger protein motifs. However, both receptors
display significant differences in their C-terminal, which contains the ligand binding domain (in rat
58% amino acid homology). At the N-terminal domain, there is no homology between the receptors
at al (Toran-Allerand, 1996). Functionally, the ligand binding domain is the most active site in the
ER structure (Hermanson et al., 2002). It is involved both in high affinity ligand binding and
receptor dimerization (Littleton-Kearney et a., 2002). ERs are encoded by different genes, located
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on chromosome 6 (ERa) and chromosome 14 (ERDb) (Hall et al., 2001). Furthermore, their binding
affinities, ligand specificities as well as tissue distribution are different (Toran-Allerand et al.,
1999). Recently, evidence for the existence of a possibly novel, plasma membrane-associated ER-X
was reported (Toran-Allerand et al., 2002). However, ER-X shares some homology with the C-
terminal of ERa (Toran-Allerand, 2004). Therefore, further studies are needed to reveal whether
ER-X is an unknown form of ERa or is entirely novel in origin.

ERs act directly as ligand-dependent transcription factors. According to the classica
concept of steroid action (see Figure 3), under normal conditions some steroid receptors such as the
ERs shuttle between cytoplasm and nucleus (Ylikomi et al., 1998). In the cytoplasm, ERs are
associated with a variety of proteins such as the heat shock protein 90 kDa (Hsp90) which has been
shown to be responsible for the inhibition of ER DNA binding (Ylikomi et al., 1998). In the
presence of a receptor-activating ligand, the ER-Hsp90 complex dissociates, which results in the
nuclear trandocation of the ligand-carrying ER and, ultimately, binding to DNA. In addition to this
classical pathway that is also called genomic, it has been claimed that ERs can be involved in gene
transcription via various other signaling cascades in the cytoplasm or non-genomic signaling. Such
cascades include mitogen activated protein kinase-, phosphatidylinositol 3 kinase-, CAMP response
element binding proteins- (Behl, 2002) and protein kinase B-signaling pathways (Znamensky et al.,
2003). In addition, in endothelial cells ER-mediated estrogen-dependent pathway affects cellular
membranes in a way that leads to the activation of ras, raf, mitogen activated protein kinase kinase
and the induction of the cell proliferation (Nilsson et al., 2001). The non-genomic ER-signaling
pathway has been suggested to occur both with and without presence of the ligand. In case when the
ligand is missing, ER-signaling pathway may function as a cross-talk between other signaling
pathways (Hermanson et al., 2002).
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Figure 3. A simplified schematic diagram of intracellular action of estrogens via estrogen receptor
(ER). Estrogens diffuse across the cell membrane and binds ER-heat shock protein 90 kDa (Hsp90)
complex. (1) Genomic (classical) signaling pathway. Ligand binding causes conformational
changes of receptors, release of chaperones, dimerization of the receptors and translocation directly
to the nucleus. (2) Non-genomic signaling pathway. After binding of estrogens by ER, rapid

induction of CAMP and Ca2* release through second messenger systems or activation of mitogen-
activated protein kinases, phosphatidylinositol 3-kinase and protein kinase B takes place in the

cytoplasm. Gene activation in this case is affected by other transcription factors.
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2.3.3 ERa and ER distribution in the central nervous system

In situ hybridization histochemistry in the rat central nervous system indicated the
presence of both ERa and ERb messenger RNAs (mRNA) through the rostral-caudal extent of the
brain and spinal cord (Shughrue et al., 1997). Some brain regions contain MRNA of both receptors,
whereas others exhibit ERa or ERb mRNAs exclusively. For example, only ERa mRNA
hybridization signal is detected in the ventromedial hypothalamic nucleus and subfornical organ. In
contrast, only ERb mRNA is observed in the neurons of the olfactory bulb, supraoptic,
paraventricular, suprachiasmatic, and tuberal hypothalamic nuclei, zona incerta, ventral tegmental
area, cerebellum (Purkinje cells), laminae 111-V, VIII, and IX of the spinal cord, and pineal gland
(Shughrue et al., 1997). Other brain regions such as the hippocampus, the amygdala and the
cerebral cortex express both ERa. and ERb mRNA.

2.3.4 Effects of estrogens: lessons from experimental and population-based studies

The traditional site for the study of ovarian steroids actions and their receptors was
the hypothalamus, because of its control of reproductive function. More detailed ERs mapping
studies revealed the distribution of the ERs in such regions as amygdala, hippocampus, neocortex,
and cerebellum (Shughrue et al., 1997). A wide distribution of the ERs in the nervous system
suggests that estrogen may be involved in a variety of physiological functions in neuronal cells.
Indeed, many estrogen-dependent alterations have been described. These include the induction of
ChAT in the basal forebrain (Gibbs et al., 1994), increases in the expression of tryptophan
hydroxylase, which is the key enzyme in serotonin biosynthesis, the suppression of the serotonin
transporter expression in the macague raphe nuclei (Pecins-Thompson et al., 1996; Pecins-
Thompson et al., 1998), time-dependent effects on the level of tyrosine hydroxylase mRNA in the
catecholaminergic cells of brainstem (Liaw et a., 1992), heterogeneous effects on the dopamine
turnover (increases in dorsomedial nucleus and decreases in rostral perivetricular, medial preoptic,
and preoptico-suprachiasmatic nuclei) (Lookingland and Moore, 1984). Taken together, these
observations show the complexity of estrogens actions in the brain.

Besides their physiological actions, estrogens are also known to influence the
morphology of neurons. For example, estradiol mediates hippocampal synapse density during the
estrous cycle inrats (Woolley and McEwen, 1992; Woolley and McEwen, 1993). Rune et al. (2002)
suggested that estradiol-induced spine formation on CA1l pyramida cells may be mediated
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presynaptically by activating ERa in CA3 pyramidal cells. Moreover, a number of studies revealed
an improvement in learning and memory performance in ovariectomized (OV X) rodents (McEwen
and Alves, 1999). However, data from the human population-based studies on the effect of ERT on
cognitive functions in postmenopausal women were contradictory. Some studies reported that ERT
is associated with better performance in visual and verbal memory tests, fine motor skills and
somewhat poorer performance on tests of spatial recognition (Barrett-Connor and Kritz-Silverstein,
1993; Henderson et al., 1996; Kampen and Sherwin, 1994; Kawas et al., 1997). Paganini-Hill and
Henderson (1994, 1996) reported that the risk of AD and other dementias might be significantly
lower in ERT users, also with higher ERT doses and duration than in non-users. At the same time,
no association between estrogen use and AD was found in a number of other studies (for review see
Hogervorst et al., 2002). Studies that reported positive or negative findings were difficult to
compare because of discrepancies in the methods used. For example, common selection bias when
study subjects are from the health maintenance organisation (Brenner et a., 1994), unknown
additional treatment or use of vaginal medication (Brenner et al., 1994; Henderson et al., 1996), a
bias that is associated with patient compliance (Paganini-Hill and Henderson, 1994, 1996) or an
additional hormone treatment (such as thyroid replacement therapy) could have influenced the
reported results. Thus, large scale double blinded, placebo-controlled studies were needed to
confirm the beneficial effects of estrogenic treatment on central nervous system.

The Womens' Health Initiative (WHI) study was a large-scale randomized clinical
trial whose estrogen and progestin arm was prematurely stopped. The findings from this study
showed that the benefit of taking ERT was outweighed by the increased risk of venous
thromboembolism, stroke, and myocardial infarction in postmenopausal women (Rossouw et al.,
2002). The disappointing results lead to the conclusion that ERT or HRT should not be

recommended to postmenopausal women.
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3. Aims of the study

The present work was designed to investigate the effects of estrogen deprivation and
ERT on the number of cholinergic cellsin the basal forebrain and their content of ERa. in rodents.

The specific aims of thiswork were:
To combine and apply stereological methods and improvements in the histological
techniques to estimate the total number of cholinergic cells in the MSVDB, HDB and NbM
(study I)
To reveal the effect of ERT on the tota number of cholinergic cells in the basal forebrain
and their content of ERa in aged mice (study I1)
To investigate whether OVX and ERT affects hippocampal Ab deposition load in double
transgenic (APP/PS1) mice carrying mutated amyloid precursor protein (APPswe) and
presenilin-1 (PS1-A246E) (study I11).
To estimate the cholinergic cells and their content of ERa in APP/PS1 transgenic mice and

their wild-type littermates at 6 and 12 months of age (study 1V)



4. Materials and methods

4.1 Animals

Animal species, strains, age and number of animals used in this series of studies are

presented in Table 2. The animals were singly housed in a controlled environment (National Animal
Center, Kuopio, Finland; temperature 22°C, humidity 50-60%, lights on from 0700 to 1900 hours)

with water and food freely available. In study I1, C57BL/6J mice with some genetic background
derived from 129/Sv and DBA/2J inbred strains were used. In the studies Il and IV, transgenic

mice expressing either human PS1 harboring the familial AD-linked A246E mutation (strain
background = C3H/HeJ x C57BL/6J F3) or chimeric mouse/human APP695 harboring a human Ab
domain and mutations (K595N, M596L) linked to Swedish familial AD pedigrees (strain
background = [C3H/HeJ x C57BL/6J F3] x C57BL/6J n1) were backcrossed to C57BL/6J mice for
6 generations. Subsequently, these lines were crossed together to generate double transgenic mice

coexpressing both transgenes (Borchelt et a., 1997).

Table 2. Characterization of the animals and histology used in the studies.

Study Animal Strain Animal | Animal age, | Histology/immunohistochemistry
species number months
I Rat Wigar 4 3 ChAT and ERa immunolabeling
I Mouse | C57BL/6J* 20 21 ChAT and ERa immunolabeling
[l Mouse | APP/PS1 75 9and 17 Modified Bielschowsky's silver
staining
Vv Mouse | APP/PS1 57 6 and 12 ChAT and ERa immunolabeling

* C57BL/6J mice with a small contribution from 129/Sv and DBA/2J strains; APP/PS1-double

transgenic mice carrying mutated amyloid precursor protein (APPswe) and presenilin-1 (PS1-

A246E); ChAT-choline acetyltransferase; ERa-estrogen receptor apha.
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All experiments were permitted by the National Laboratory Animal Center and were done
according to the guidelines set by the Council of Europe and the State Provincial Office of Eastern

Finland.

4.2 Ovariectomy

The mice were anesthetized with a mixture (8 mi/kg of body weight, i.p.) of sodium
pentobarbital (46 mg/kg; Synopharm, Germany) and chloral hydrate (47 mg/kg; Merck, USA). The
fur on the both sides of body was shaved from hip to the lowest rib, bilateral incisions were made
and the ovaries and surrounding tissue were removed. The incision was closed by suturing the
muscles and stapling the skin. In the sham-operated (SHAM) group of mice, only skin and muscles

were cut but the ovaries were not removed.

4.3 17b-estradiol treatment

Each animal from the OVX (studies II, 1Il and IV) or SHAM (Study IIl) groups
treated with 17b-estradiol (OVX+E and SHAM+E, respectively) had a subcutaneously implanted
estrogen pellet containing 0.18 mg of 17b-estradiol (Innovative Research of America, USA) that
delivers a continuous supply of estrogen for 90 days. These pellets yield serum estradiol levels of
50-75 pg/ml, which is similar to the serum estradiol levels of 35-75 pg/ml reported in mice during
proestrus (Grasso and Reichert, 1996; Nelson et al., 1992).

4.4 Histology

The mice were deeply anaesthetized with a mixture (8 mi/kg of body weight, i.p.) of
sodium pentobarbiturate (46 mg/kg; Synopharm) and chloral hydrate (47 mg/kg; Merck). Thereafter
they were perfused through the heart, first with saline (3 min), then with a fixative containing 4%
paraformaldehyde, 0.05% glutaraldehyde and 0.26% picric acid in 0.1 M phosphate buffer (PB), pH
7.4. The animals were coded so that the experimenters did not know what treatment they had
received during the study. Brains were removed from the skulls and 40 um-thick sections were cut
onalecaVT 1000 S vibratome into 4 (studies Il and 1V) or 6 (study I) series. One series from

each animal was randomly selected and further processed for immunohistochemistry.
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4.4.1 Immunohistochemistry

The sections were extensively washed in PB and immersed in a mixture of 25%
sucrose and 10% glycerol in 0.05 M PB, and freeze-thawed in liquid nitrogen in order to increase
the penetration of antisera during immunostaining. Next, sections were washed with 0.05 M Tris
buffered saline, pH 7.4 (TBS), 2 times for 20 min, and with 0.5% Triton X-100 TBS for 15 min.
Non-specific binding sites for subsequently applied immunoreagents were then blocked with 10%
normal goat serum (NGS; Colorado Serum Company, USA) for 40 min, followed by the treatment
of sections with 1% NGS in TBS for 10 min. The sections were incubated for 48 hours a 4°C in a
polyclonal rabbit anti-ERa antibody (1:10000, Santa Cruz Biotechnology, USA, catalog no. sc-542;
Pavao and Traish, 2001) that recognizes the C-terminal domain of the ERa. Extensively rinsing of
sections was then followed by an incubation with biotinylated anti-rabbit 1gG (1:300 Vector BA-
1000, USA) overnight at 4°C and then in avidin/biotin horseradish peroxidase complex (ABC,
1:500 Vector PK-4000) for 3 hours a room temperature. The immunoperoxidase reaction was
carried out using ammonium nickel sulfate-intensified 3,3¢diaminobenzidine (DAB) as a
chromogen, giving a blue-to-black granular reaction product. After further extensive washing, the
ERo stained sections were incubated in rabbit anti-ChAT antiserum (1:4000 Chemicon AB 143,
USA, publications Il and IV; Bruce et al., 1985) or monoclonal rat anti-ChAT antibody (1:10,
770990; Roche, Basel, Switzerland; study I; Eckenstein and Thoenen, 1982) for 48 hours a 4°C
followed by incubation in goat anti-rabbit 1gG (1:300 Jackson 111-005-003, USA; studies Il and
V) or rabbit anti-rat 1gG (1:50, AB-136; Chemicon; study I) for 6 hours at room temperature, and
then in rabbit peroxidase anti-peroxidase complex (1:400 DAKO ZO 113, Denmark; studies Il and
V) or rat peroxidase anti-peroxidase complex (1:300, PAP-20, Chemicon; study I) overnight at
4°C. The second peroxidase reaction was carried out using plain DAB as a chromogen, resulting in
a homogeneous brown end product. For all washing steps 0.05 M TBS pH 7.4 containing 1% NGS
served as dilutent for the antisera. Sections were washed 3 times for 30 min between the use of all
immunoreagents.

Double immunoperoxidase labeling of ERa (Santa Cruz Biotechnology) and ChAT
was also performed based on rat anti-ChAT (Boehringer Mannheim Biochemica, Germany) or goat
anti-ChAT (Chemicon AB 144P, USA). Control stainings for immunohistochemistry were carried
out by omission of one or both primary antibodies. No cellular staining was observed in these

controls.
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4.4.2 Modified Bielschowsky's silver staining

Bielschowsky's silver staining was performed according to a modification by
Y amamoto and Hirano (1986). Tissue sections were placed in 20% silver nitrate for 20 min in the
dark. Subsequently, sections were removed and placed into distilled water. Evaporated (for 20 min)
ammonium hydroxide was added to the silver nitrate solution drop by drop, stirring vigorously until
the precipitate turned clear. Then, 2 more drops of ammonium hydroxide were added. The sections
were returned to this solution for 15 min in the dark. They were then transferred into ammoniacal
distilled water (3 drops of ammonium hydroxide in 100 ml distilled water). Subsequently 3 drops of
the developer (containing 20 ml formalin, 1 drop concentrated nitric acid and 0.5 g citric acid in 100
ml distilled water) were added to the solution of the ammoniacal silver nitrate. The sections were
allowed to remain in this solution until the fibers are black with a tan background which was
controlled under the microscope. The whole development procedure took 3-5 min. Then sections
were washed in distilled water, dehydrated and mounted in Durcupan.

4.4.3 Tissue embedding

Durcupan. After thorough washing in TBS, free-floating sections were rinsed with
distilled water, dehydrated in a series of ethanol (50%, 70%, 90%, 96% for 5 min in each and in
absolute ethanol twice for 5 min) and propylene oxide twice for 5 min. The sections were then
immersed in Durcupan (AMC, Fluka, Buchs, Switzerland). After 3 hours at room temperature in
Durcupan, the sections were transferred onto slides and covered with a coverslip. To ensure that the
sections were planar between the coverslip and the objective slide and that excess Durcupan was
removed, a glass block (weight ~50 g) was placed on the coverdip to slightly press the coverdlip.
The Durcupan was subsequently polymerized at 60°C for 24 hours.

Depex. After thorough washing in TBS, the sections were mounted on gelatin-coated
slides and dried overnight at 37°C. Thereafter, sections were dehydrated in absolute ethanol, cleared
in xylene, embedded with Depex and coverslipped.

4.5 Stereology

In our experiments, the optical fractionator method (Gundersen, 1986) was used to
estimate cell numbers. The analysis was done using Stereolnvestigator software (MicroBrightField,
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USA). For immunostaining, one series of samples in four (studies Il and IV) and six (study 1) was
randomly selected using a random number table. The nuclei were first outlined using CFl Plan
Achro 4x objective. Thereafter, a CFl Plan Fluor 100x oil immersion objective (N.A. 1.30, W.D.
0.20 mm, optical depth 0.16 mm) was used for the counting. The main parameters of the

stereological counting were the following: a grid size-6400 nmZ, an area between each counting

frame was 1225 nm?2, the mean thickness of the mounted section-30 nm, the guard zone was st to
5 mm from the surface of the section, and the disector height-20 nm. The counting criterion was that
the top of the cell body comes into focus inside the disector height. The counted ChAT-ir neurons
were divided into the following groups: 1) neurons that were positive for ChAT-ir only; and 2)
neurons that were positive for both ChAT- and ERa-ir (ChAT/ERa-ir). The latter group in study 1V
was subdivided into ChAT-ir neurons that contained nuclear ERa-ir and neurons that contained
cytoplasmic ERa-ir. The total number of ChAT-ir neurons in all studies was the sum of all counted

cell groups.

4.6 Plague counting

Systematic uniform sampling with random starting point was used to select every
eighth section for modified Bielschowsky's silver staining (Y amamoto and Hirano, 1986). After the
staining, each visualized plague on each section was plotted using the Stereol nvestigator program
(MicroBrightfield Inc., USA). Counting was performed in the entire rostrocaudal extent of the

hippocampal formation including the dentate gyrus, hippocampal proper, and subicular complex.

4.7 Statigtical analysis

The statistical analyses were made using the SPSS for Windows program (v. 9.0 and
10.0; SPSS Inc., USA). One-way analysis of variance (ANOVA) followed by Bonferroni and
Scheffe's post hoc tedts, univariate ANOVA and t test (Altman, 1991) were used to analyze the
treatment effects and the group and treatment interactions on different variables. The level of
statistical significance for all values was set at P<0.05. The statistical methods are described in
detall in publications|-1V.
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5. Results

5.1 Durcupan embedding

The mounting in the epoxy-resin Durcupan was used in studies I-1V in order to
maintain section thickness, while the routine mounting in Depex caused a flattening of sections. The
clear difference in section thickness of Depex and Durcupan mounted material was revealed in
study I. The thickness of mounted sections was 12.8+0.1 mm in Depex and 40.8+0.35 nm in
Durcupan. Macroscopically, sections mounted in Durcupan with its intrinsic brownish color were
darker than those in Depex. However, at the microscopic level both chromogens in double
immunostained sections were clearly distinguishable. Furthermore, Durcupan embedding facilitated
the identification of individual cellswhile focusing through the section.

5.2 Thetotal number of cholinergic neurons in the basal forebrain of young rats

In study I, the total humber of ChAT-ir neurons was estimated from the main
cholinergic basal forebrain nuclei of male Wigtar rats. Animals were sacrificed at the age of 3
months. The numbers of ChAT-ir and ChAT/ERa-ir neurons from each cholinergic nucleus are
presented in Figure 4A. The highest percentage of ChAT-ir cells that contained ERa-ir was
observed in the MSVDB (Figure 4B). The NbM had the lowest percentage of ChAT/ERa-ir from
all analyzed regions.

Figure 4A. Numbers of ChAT- and ChAT/ERa-ir neurons in the rat basal forebrain.

7000
6000
5000 —
4000 L O ChAT, n

3000 +— B ChAT/ERa, n
2000 —

1000 -:
0 \

MSVDB HDB NbM

Neuron number

Region



42

MSVDB-medial septum-vertical diagonal band; HDB-horizontal diagonal band; NbM-nucleus
basalis magnocellularis; ChAT-choline acetyltransferase; ChAT/ERa-choline acetyltransferase and
ERa colocalized.

Figure 4B. Percentage of ChAT/ERa-ir neuronsin the rat basal forebrain cholinergic nuclei.
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basalis magnocellularis.

5.3 Amyloid plague counts in transgenic mice

The modified Bielschowsky's silver staining revealed aggregates of argyrophilic
material in plague-like formations and neurotic profiles throughout the brain of APP/PS1 mice. The
size and shape of the plaque-like formations were similar to those observed earlier using Ab
immunostaining (Borchelt et al., 1997). First plagues were detectable at the age of 9 months and
were located in the region of the subiculum. At the age of 17 months, the deposits were also
detected in the molecular layer of the dentate gyrus and the stratum lacunosum-moleculare of the
CA2-3 subfields of hippocampus. In the CA1 subfield, plagues were scattered across different
layers.

Seventeen months old APP/PS1 SHAM animals had approximately 15 times higher
number of deposits than that in the 9-month-old mice (ANOVA, P<0.001). However, no
statistically significant differences were observed in amyloid plague counts between the groups
(SHAM, OV X, and estrogen treatment) at the age of 9 (F(2,24)=2.1, P=0.2) or 17 (F(2,49)=0.7,
P=0.5) months. Amyloid plague counts between SHAM and SHAM + E mice at the age of 17
months did not differ (t test, P=0.8).
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5.4 Effects of estrogen on the total number of cholinergic neurons and their content of ERa in aged
mice
The total numbers of ChAT-ir neurons in the MSVDB, HDB and NbM of 21-month-
old female mice were not influenced by OV X or 17b-estradiol treatment (Figure 5A).

Figure 5A. Total numbers of ChAT-ir neurons in the MSVDB, HDB and NbM of different
treatment groups.
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SHAM-sham-operated; OV X-ovariectomized; OV X+E-ovariectomized and treated with 17p-
estradiol; MSVDB-medial septum-vertical diagonal band; HDB-horizontal diagonal band; NbM-
nucleus basalis magnocellularis.

The percentage of ChAT/ERa-ir cells in the MSVDB was significantly higher in the OVX group
than that in SHAM mice (Figure 5B; ANOVA, Bonferroni post hoc test, P=0.036). Interestingly,
such difference was not observed in other analyzed regions, i.e. the HDB and NbM.
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Figure 5B. The percentage of ChAT/ERa-ir neuronsin the MSVDB of different treatment groups.
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* ANOVA, Bonferroni post hoc test, P=0.036; SHAM-sham-operated; OV X-ovariectomized;
OV X+E-ovariectomized and treated with 17b-estradiol.

5.5 Nuclear and cytoplasmic localization of ERa in cholinergic neurons

In study IV, the ChAT/ERa-ir neurons were subdivided into those having nuclear
ERoa-ir and those having cytoplasmic ERa-ir. The numbers of ChAT-ir neurons containing nuclear
and cytoplasmic ERa-ir from the MSVDB of 6 and 12 month old mice are presented in Figure 6.
There were no significant differences between the treatment groups or age groups in the total
number of ChAT-ir neurons, number of ChAT/ERa-ir neurons or the percentage of ChAT/ERa-ir
neurons. However, the number of ChAT-ir cells containing nuclear ERa-ir was significantly lower
in 12-month-old than in 6-month-old mice (ANOVA, P<0.001).
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Figure 6. The number of ChAT-ir neurons containing nuclear and cytoplasmic ERo-ir in the
MSVDB of 6 and 12 months old mice.

1600 .

1400 |
1200 I Tl -
lg(())(()) _ _I_I T O Nuclear ERa

600 — B Cytoplasmic ERa

400 T
200
0 :

SHAM 6m APP/PS1 SHAM 12m  APP/PS1
SHAM6m SHAM 12m

Neuron number

Animal group

* ANOVA, P<0.001; SHAM 6m-sham-operated, 6-month-old; APP/PS1 SHAM 6m-APP/PS1
double transgenic, sham-operated, 6-month-old; SHAM 12m-sham-operated, 12-month-old,;
APP/PS1 SHAM 12m-APP/PS1 double transgenic, sham-operated, 12-month-old.
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6. Discussion

6.1 Experimental animals

Age of animals. Experiments in the present work were performed with 3-month-old

ratsand 6, 9, 12, 17 and 21 months old female mice that are representatives of different age groups
according to the following age criteriaz animals become adult at the age of 2-3 months, when
rodents start to be sexually mature. At the age of 6-12 months mice would correspond to adulthood,
whereas 17-21-month-old are mostly in a postmenopausal state.

Ovariectomy as a model in estrogen studies. OVX animals are widely used in

experimental studies as controls for estrogen-replaced animals. The ovaries are the main source of
systemic estrogen for non-pregnant adult females. However, other sites of estrogen biosynthesis are
present throughout the body, e.g., in adipose tissue. After the ovaries are removed, animals gain
weight (Gale and Sclafani, 1977). Therefore an increase in adipose tissue may result in greater local
biosynthesis of estrogen catalyzed by aromatase, a terminal enzyme in local estrogen biosynthesis
activity (Simpson et al., 1999). Davidge and colleagues (2001) studied whether OV X might be a
confounding factor for estrogen-related experimental studies. Although the body weight in OV X
Sprague-Dawley rats was greater than that in normally cycling animals, plasma 17b-estradiol levels
were significantly higher in the cycling rats. The uterine weight which is a biological marker of
estrogen level was satistically similar in cycling and OVX groups. However, from the vascular
responses in mesenteric arteries the authors concluded that OV X-only model without a calorie-
controlled diet may preclude an accurate determination of the effects of estrogen. In the current
studies 11-1V, OV X animals had clearly lower uterine weights than those in SHAM animals. Thisis
indicative of the difference in the systemic estrogen level between these groups. Furthermore, in
none of the studies (11-1V), Satistically significant differences in body weight between the treatment
groups were observed. Thus, greater local biosynthesis of estrogen is unlikely to confound the
presented results.

Transgenic model for AD. Transgenic mice used in experiments Il and 1V carried

mutated APPswe and PS1-A246E genes. This transgenic mouse strain exhibits clear
neuropathological changes such as accumulation of amyloid plagues in the brain starting around the
age of 9 months (Borchelt et al., 1997). The formation of amyloid plaques is primarily detectable in
the subiculum and caudal cortex, and extends later to hippocampus and other cortical areas. In
addition, at the age of 12 months, these transgenic mice exhibit significant deficits in water maze
learning when compared to wild type littermates (Puolivéli et al., 2002). On the other hand, these
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mice do not show cholinergic cell loss in the basal forebrain at the adult age. However, it is possible
that visible pathological changes in the cholinergic nuclei of the basal forebrain show up later.
Nevertheless, the relatively late age when these mice develop neuropathological and behavioral
changes is advantageous in studies where different treatment strategies can be tested.

6.2 Methodological considerations

Embedding material. Durcupan embedding was routinely used to ensure an accurate

estimation of the total numbers of ChAT- and ChAT/ERa-ir neurons. In general, the optical
fractionator method (Gundersen, 1986) is designed to make estimations despite the shrinkage of the
analyzed tissue. However, the shrinkage of the tissue can affect the analysis itself. Study | showed
that sections which undergo the commonly used dehydration procedure and embedding in Depex
mounting material shrink up to 74% of their original thickness. In contrast, sections embedded into
Durcupan lose only 20% of their thickness. Thisresidual thickness loss is probably due to chemical
procedures sections undergo during immunostaining (e.g. Triton X-100 treatment) or mounting.
Durcupan embedding also facilitated the recognition of distinct cells while scanning the sections
and allowed a better verification of the optimal penetration of the antibodies throughout the section
than in Depex-embedded material. Due to its advantageous properties compared with commonly
used Depex, Durcupan was preferentially applied in the presented stereological studies.

Stereology. The term sterology has been introduced in the early 1960s by Hans Elias
(see Mouton, 2002) and has its origin from the Greek word stereo to be translated as ‘solid’. Asa
method, stereology employs a three-dimensional analysis of biological structures. The important
milestones of the modern stereological methods are unbiased sampling and the estimation of such
parameters as the cell number, area, volume and length. This unbiased estimation introduces clarity.
Furthermore, the comparison of results from different experiments executed by different research
groups is reliable. In this series of studies, one of stereological methods, an optical fractionator
(Gundersen, 1986), was used to count the total numbers of cholinergic neurons from different basal
forebrain nuclei. Although almost the same optical fractionator strategy was used in all studies, the
coefficient of variance (CV) or, in other words, the degree to which a set of data points varies,
differed in different experiments. For example, in study I, the CV of the total number of ChAT-ir
neurons in the MSVDB of ratswas 0.10. In study 11 and IV, the CV of the total number of ChAT-ir
cells differed from 0.32 (study I, SHAM group) to 0.49 (study IV, 12 months old APP/PS1 SHAM
group) in the mouse MSVDB. Indeed, the CV values in mice studies are high. Several factors could

influence that and explain higher animal variability in cell numbers. Firgt of all, strain of animals. In



48

study 11, C57BL/6J mice that had a small contribution from 129/Sv and DBA/2J strains were used.
It could be viewed as a limitation in the study results interpretation. It has been observed that the
number of cholinergic neurons in the MSVDB region is highly dependent on the mouse strain
(Schwegler et al., 1996). Furthermore, such extrinsic factors as aging, surgical manipulations,
treatment and pathology which are related to transgenic lines may contribute to the observed
variation.

Antibody selection. The selection of the antibodies for the immunohistochemical

stainings plays a vital role in the interpretation of the results of the study. The specificity of ChAT
and ERa antibodies that were used in studies I-1V and their ability to react with rodent ChAT and
ERa proteins in the brain were well documented in previous studies (Eckenstein and Thoenen,
1982; Harkany et al., 2002; Jeon et al., 1998; Pavao and Traish, 2001; Rossier, 1981). In studies 11
and IV, the antibodies against ERo. and ChAT were raised in the same species-rabbit. This fact may
raise some concerns about the results and their interpretation. However, as described in the
Materials and methods of studies Il and 1V, both antigens were consecutively labeled and it should
be emphasized that the black precipitate of nickel-DAB indicating ERa apparently covered all
immunoreagents used for this staining. This masking obviously prevented any interference with the
subsequent brown immunolabeling of ChAT with plain DAB as chromogen. It is noteworthy that
the ERa-immunostained nuclei never turned brown during the second immunostaining and were
clearly distinguished from the cytoplasmic ChAT immunoreactivity. Furthermore, the control
stainings carried out by omitting one or both primary antibody from the double staining procedure
resulted in no staining for the corresponding antigenic sites. In addition, when a single
immunostaining was performed, ERa immunoreactivity was seen both in the nucleus and to certain
extent also in the cytoplasm, whereas ChAT immunoreactivity was exclusively found in the
cytoplasm. Nevertheless, a concomitant detection of ERo and ChAT is also possible based on other
alternative antibody combinations, for example, using polyclonal rabbit anti-ERa (Pavao and Traish
2001) and polyclonal goat anti-ChAT (Aucoin et al., 2005; Brauer et al., 2000; Hartig et al., 2002).

6.3 Ovariectomy and estrogenic treatment effects on the cholinergic neurons

In study 1V, the numbers of ChAT/ERa-ir neurons in the MSV DB were not influenced by
estrogen-related treatment at 6 and 12 months of age in both transgenic and wild-type mice.
Moreover, the percentage of ChAT/ERa-ir neurons was independent from estrogen status and did
not differ in these mice. Evidence from earlier studies examining the relationship between the

estrogen status and cholinergic system suggested that estrogen treatment causes an increase in the
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cholinergic parameters such as ChAT activity (Gibbs and Aggarwal, 1998), potassium-evoked
acetylcholine release and ChAT mRNA expression (Gibbs and Aggarwal, 1998). The relationship
between estrogen status and number of cholinergic cells was also investigated. Miller et al. (1999)
reported that estrogen increases the number of ChAT-ir neurons in the bed nucleus of the stria
terminalis of 5-month-old C57BL/6J mice lacking estrogen. Gibbs (1998), on the other hand, found
no significant changes in the number of ChAT-ir profiles/section in the MS and NbM of 16 and 19
months old Sprague-Dawley rats sacrificed 3 or 6 months following ovariectomy when compared to
gonadally intact or estrogen treated animals. However, the number of ChAT-ir neurons in the rat
basal forebrain may depend on the different estrogen doses and duration of treatment in these
studies. It is possible that the administration of physiologically high doses of estradiol for 1 or 2
weeks resulted in a significant increase in the number of ChAT-ir cells in the MS and NbM of
Sprague-Dawley rats (Gibbs, 1997). In the presented studies Il and IV, the administration of
estrogen at physiological doses lasting 3 months had no influence on the number of cholinergic
cells in mice. In conclusion, the ovariectomy and estrogen treatment per se hardly influenced the
cholinergic system. However, the duration of treatment and dose of applied estrogen could be key

factors which affect cholinergic cell survival.

6.4 Estrogen dose and effect on the cholinergic cells of the basal forebrain

In experimental studies, the effects of estrogens were studied in a variety of
nanomolar and micromolar concentrations (Lee and McEwen, 2001). It is known that low estrogen
concentrations may enhance the amplitude of kainate-induced currents in CA1 (Gu et al., 1999) and
inhibit calcium currents in striatal neurons (Mermelstein et al., 1999). High concentrations (2 puM)
of 17b-estradiol show neuroprotective effects in vitro (Bishop and Simpkins, 1994). In the basal
forebrain of adult rats, ChAT mRNA fluctuates across the estrous cycle in adult rats (Gibbs et al.,
1994; Gibbs, 1996). A dose related increase in the number of ChAT-like immunoreactive cells was
observed in the MS and NbM (Gibbs, 1997). However, these effects lasted only 1-2 weeks. In
addition, injections of 17b-estradiol that produced very high estrogen levels in the blood (400-900
pg/ml) did not affect the level of ChAT activity. Similarly, administration of estradiol to
ovariectomized female rats had rather modest effects on the ChAT activity in the basal forebrain
nuclei, but showed a significant increase in their projection fields (Luine, 1985). In studies I, 1l
and 1V, the implanted estradiol pellets yielded serum estradiol levels of 50-75 pg/ml, which is
similar to the serum estradiol levels of 35-75 pg/ml reported in mice during proestrus (Grasso and
Reichert, 1996; Nelson et al., 1992). Nevertheless, none of those studies showed any treatment
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effect on the ChAT-ir neuron number in the basal forebrain nuclei. In general, this finding is in
agreement with previously published results where the long-term treatment with physiological
doses of 17b-estradiol did not affect the number of ChAT-positive cells in rats (Gibbs, 1997). This
suggests that both in rats and in mice the number of cholinergic neurons of the basal forebrain may
be increased only by short-term estrogen treatment.

6.5 Cholinergic system in transgenic mice with age dependent b-amyloidosis

The cholinergic system undergoes severe degeneration in AD. In study IV, the number of
ChAT-ir neurons in the MSVDB of 6 and 12 months old APP/PS1 mice was investigated. At 12
months this animal model for AD develops some pathological features resembling AD
pathophysiology such as learning and memory deficits (Puolivali et al., 2002) and plague
accumulation (Borchelt et al., 1997). However, both number and distribution of ChAT-ir neurons
remained unaltered in 12-month-old APP/PS1 mice. This finding is in agreement with earlier
published data from other AD transgenic mouse lines. Hernandez et al. (2001) examined the
number of ChAT-positive neurons in NbM/substantia innominata (NoM/SI) in 12 months old PS1-
1M164V and APPTg2576 double mutant transgenic mice and concluded that the number of
cholinergic neurons in the NbM/SI complex is the same as in non-transgenic littermates.
Furthermore, total cholinergic innervation in the frontal cortex of APP/PS1 mice was essentially
equivalent to the non-transgenic littermates at 3, 8, 12 and 18 months of age (Hernandez et al.,
2001). Applying stereological methods, Jaffar et al. (2001) counted basal forebrain cholinergic
neurons bearing the low-affinity p75 neurotrophin receptor in 12 months old APPswe/PS1M 146L
double mutant mice and found no significant difference with their littermate controls. All this
evidence indicates that age dependent b-amyloidogenesis does not affect cholinergic neurons

directly or isunable to cause cholinergic deterioration in mice.

6.6 Estrogen status modulation and ERa content in cholinergic cellsin mice

It was suggested that estrogens together with other steroid hormones may act not only
through the well-known genomic pathway, but could be also involved in the non-genomic
activation of the cellular mechanisms (McEwen and Alves, 1999). The findings from study 1V,
where the number of ChAT-ir neurons containing nuclear ERa is significantly lower at 12 months

of age than that at 6 months, suggest that the balance between genomic and non-genomic pathways
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may be changed due to aging per se. Furthermore, a similar pattern of nuclear versus cytoplasmic
digtribution of ERs in cholinergic cells of MSVDB might be also present in older animals. Indeed,
our own unpublished observations suggest that the number of ChAT-ir cells containing nuclear
ERa-ir a 12 months and 21 months of age remain similar. Thus, changes that facilitate or disrupt
ERo trandocation from the cytoplasm to nucleus might occur in adult animals and remain
irreversible later on. This would also mean that these changes are independent from the level of
estrogenic hormones which is in accordance with the data on 21 months old mice. Interestingly,
SHAM, OVX and OV X+E groups did not significantly differ in the number of ChAT-ir neurons
containing nuclear ERa-ir. Whether higher proportion of the cytoplasmic ERa in cells is favoring
non-genomic pathways requires further investigation.

Taken together, evidence of the redigtribution of the ERa between nucleus and
cytoplasm inside cholinergic neurons requires further studies that could explain the physiological

meaning of such process.

6.7 Estrogen modulation and b-amyloid accumulation

The accumulation of amyloid peptides that frequently comprise 40-42 amino acids
and are derived from APP is believed to play a maor role in the etiology of AD (for review see
Selkoe, 1991). Xu and colleagues (1998) demonstrated in vitro that physiological concentrations of
17b-estradiol cause a decrease of amyloidogenic Ab forms and an increase in soluble form of Ab in
a dose-dependent manner. It was hypothesized that 17b-estradiol may increase a release of APP
from the trans-Golgi network, eventually reducing the local concentration of APP available as a
source for Ab production (Xu et al., 1998). Subsequently, several research groups showed that
OV X isassociated with an increase in total Ab levels as compared to intact controls (Petanceska et
al., 2000; Zheng et al., 2002). This effect could be reversed through administration of estradiol.
However, in study 111, the hippocampal accumulation of Ab was not influenced by OV X or 17b-
estradiol treatment in OVX and SHAM-operated transgenic mice. These data are in contrast with
some of the previous studies. It is possible that the duration of the OV X, the age when OV X was
performed and the age of transgenic animals when first Ab deposits occur play a crucial role. Based
on the previous studies, long term (e.g. 3 months) OV X, which is performed before the age when
animals develop Ab deposits may affect the total amount of Ab in the brain. Otherwise, estrogen

modulation most likely has no influence on the accumulation, aggregation and deposition of Ab in



52

susceptible brain regions. However, post mortem analysis of AD patients that have participated in
ERT clinical trials might provide further insights.

6.8 General discussion

A main result of the present work wasthe finding from study 1V that in older animals
the number of cholinergic neurons of the MSVDB containing cytoplasmic ERa-ir increased when
compared to younger mice. These changes could be triggered by factors that inhibit nuclear receptor
shuttling through nuclear pores. This suggests that the intensity of the non-genomic pathway
through which estrogens exert their functions is higher in older mice. Whether the disturbance of
these pathways in older animals would lead to morphological or functional changes in the brain is
unknown. It is also unknown whether the same age-related shift in subcellular ER distribution
occurs in humans. However, if the redistribution of ERs in humans occurs as in mice, it may at least
partially contribute to the negative outcomes of the WHI study (Shumaker et a., 2004). Although
the number of women with dementia was small, this study revealed an increased risk of all types of
dementia due to combined hormonal therapy. The treatment administered in that study contained
conjugated estrogen and a derivative of progesterone, which was added to prevent cancer. However,
progesterone limits tissue response to estrogen by decreasing the concentration of cytoplasmic ERs
(Speroff et al., 1982). In other words, progesterone suppresses estrogens' actions through the non-
genomic pathway whose intensity and, possibly, importance increases during aging. Then, the
administration of progesterone derivatives could mask beneficial actions of estrogens' systemically
by decreasing the amount of cytoplamic ERs.

The negative findings from WHI study urged on a search for new therapeutic
strategies that could be useful to prevent dementia and AD. Recently, a randomized, placebo-
controlled study The Multiple Outcomes of Raloxifene Evaluation study provided interesting data
(Yaffe et al., 2005). The use of raloxifene, a selective ERs modulator (SERM), resulted in reduced
risk of cognitive impairment by 33% in postmenopausal women. Furthermore, taken into account
that different ER polymorphisms could have different association with cognitive impairment
(Pirskanen et al., 2005; Y affe et al., 2002), the development of more specific SERMs could result in
even greater reduction of people at risk. The combination therapy of ERT and cholinesterase
inhibitor tacrine caused a cognitive improvement in AD cases (Schneider and Farlow, 1997).
Therefore, if estrogens can be replaced with safer and more potent SERMs, the development of
selective cholinergic drugs would become desirable. In AD, the main cholinergic nuclel that show
degeneration are located in the basal forebrain. Thus, the combination of the cholinesterase

inhibitors that would selectively target basal forebrain cells with SERMs may result in a significant
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step towards delaying the progress of the disease. Future experimental and population-based studies
should critically evaluate this possibility.



7. Conclusions

This series of studies was focussed on changes in the total number of ChAT-ir neurons
in the basal forebrain, their content of ERa-ir, and Ab accumulation in the brain in response to
estrogen modulation. The results show that the long-term modulation of estrogen status may
influence the intracellular content of ERa in the cholinergic neurons, but is unable to affect the
number of cholinergic cells or load of Ab in the brain. Unexpectedly, the intracellular localization
of ERs seems to be independent from estrogenic treatment and AD transgenic phenotype, but

altered by age per se.
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