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ABSTRACT 
 

Neuronal loss occurs in several neurodegenerative disorders, such as Alzheimer’s disease 
and Parkinson’s disease, as well as following acute insults, such as brain ischemia and trauma. 
In general, cell death can be categorized into two main types, apoptosis and necrosis, which are 
differentiated by distinct morphological and biochemical features. Cell death of neurons 
possesses special characteristics that are still inadequately understood. Deregulation of the 
cyclin-dependent kinase 5 (cdk5) has been suggested to have several consequences that might 
contribute to the course of neuronal death in both acute and chronic conditions. This 
deregulation could involve proteolytic cleavage of the cdk5 activator protein p35 to a p25-
fragment by the calcium-activated calpain-protease. Nevertheless, there are wide gaps in our 
understanding on the regulation of cdk5, which hampers the evaluation of the possible 
involvement of cdk5 in neuronal death. 

The aim of this study was to investigate the regulation of cdk5, in particular during the 
course of neuronal cell death, and also to evaluate the possible relationship between cdk5 and 
phosphorylation of the microtubule-associated protein tau. When cultured rat hippocampal 
neurons were subjected to various apoptosis-inducing compounds, one characteristic response 
was a decrease in the protein levels of p35, p25, and cdk5 as well as a reduction in the cdk5 
activity and tau phosphorylation. Toxicity caused by the neurotransmitter glutamate, or by 
calcium ionophores, was associated with a rapid calpain-mediated cleavage of p35, and an 
increase in the cdk5 activity. Unexpectedly, tau phosphorylation was concomitantly decreased. 
Both N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptors were able 
to induce calpain-mediated p35 cleavage in the cultured neurons. However, the NMDA 
receptors predominantly mediated the effect of glutamate in neurons under normal culture 
conditions. A significant proportion of the p35 protein was detected in a phosphorylated state in 
rat brain tissue. Phosphorylation of p35 appeared to affect its proteolytic degradation by the 
proteasome, as well as the calpain-mediated cleavage of p35 to p25. 

In conclusion, the regulation of cdk5 is altered during the process of neuronal death. The 
neurotransmitter glutamate could be an especially relevant inducer of the putative cdk5-
associated mechanisms of cell death. However, the changes in cdk5 during neuronal death do 
not seem to be invariably linked to the phosphorylation status of tau protein. 
 
 
 
National Library of Medicine Classification: QU 57, QU 135, QU 143, QU 325, QU 375, QY 
60.R6, WL 102.5, WL 104, WL 314, WL 359 
Medical Subject Headings: adenosine triphosphate; brain chemistry; calpain; cell death; cells, 
cultured; cyclin-dependent kinase 5; cysteine endopeptidases; dipeptides; enzyme activation; 
enzyme inhibitors; glutamic acid; hippocampus/cytology; hippocampus/drug effects; nerve 
tissue proteins; neurodegenerative diseases; neurons/drug effects; neurons/metabolism; 
phosphorylation; rats; receptors, glutamate; tau proteins 
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1. INTRODUCTION 

 

Cell death occurs throughout the lifespan of multicellular organisms. Cell death is 

essential for many processes e.g. development, maintenance of tissue homeostasis, and 

for removal of damaged cells. Turnover of cells provides a means for regeneration in a 

number of different tissues. The existence of neuronal stem cells in adult brains 

indicates that also neurons can be replaced. However, the sophistication of the nervous 

system originates from the complex cellular architecture and functional properties 

established over a long period of time, starting well before birth. These features cannot 

be fully achieved by cells born later in life. For this purpose, the neuronal cells 

responsible for the elegance of the nervous system have a long lifespan allowing the 

cells to carry out their responsibilities throughout the life of the organism. 

 

Even though neurons are considered to be irreplaceable, there is significant neuronal 

death during the development of the nervous system, and death of neurons continues at 

low rate also throughout adulthood. This cell death does not compromise the 

functionality of the nervous system, as neurons are originally produced in excess, and 

the functions of the lost cells are often compensated by plastic changes in the remaining 

neurons. In some pathological conditions cell death can take place to such extent that 

the functionality of the system becomes impaired. Neuronal death can occur suddenly 

following acute insults such as ischemia or traumatic brain injury. Pathological cell 

death can also be slow and progressive as occurs in neurodegenerative disorders like 

Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis 

(ALS). The symptoms of these disorders often cause a major decline in independent 

functional capacity as well as in the quality of life, and lead to a long-term burden to the 

patients and their relatives. Furthermore, treatment of patients suffering from these 

disorders consumes a significant amount of health care resources.  

 

Research on the molecular mechanisms of cell death increases our understanding of 

basic biological processes, and provides a foundation for efforts aiming to prevent 

pathological cell death. As neurons generally cannot be replaced, finding ways to 

prevent neuronal death is of particular interest. The neuronal cells possess several 



 16

exceptional features, and therefore knowledge on the death of other cell types cannot be 

directly applied to neurons. Also neuronal death in different pathological conditions 

differs to such extent that understanding of the molecular events contributing to cell 

death in one disease cannot be extrapolated to other neurological conditions. The 

amount of information that can be obtained by studying neuronal death in human 

patients is restricted. Experimental modeling of various neuropathological conditions in 

laboratory animals, as well as in tissue and cell cultures, represents one possibility to 

considerably extend our knowledge on the cascades of molecular events ultimately 

leading to pathological neuronal death. The cyclin-dependent kinase 5 (cdk5) is one 

example of an enzyme that has been implicated in the molecular pathways underlying 

neuronal death. Cdk5 plays a pivotal role in the normal biology of neurons, however in 

some neuropathological conditions cdk5 has been suggested to become deregulated, and 

this may have pathological consequences. A detailed understanding on the regulation 

and functional significance of this enzyme is needed to dissect its possible contribution 

to pathological events. 
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2. REVIEW OF THE LITERATURE 

 

2.1. Molecular mechanisms of neuronal cell death 

 

Cell death is often divided into two main types i.e. apoptotic and necrotic cell death. 

This distinction is classically made on the basis of morphological features, although also 

certain biochemical hallmarks are associated with different types of cell death 

(Syntichaki and Tavernarakis 2003, Yuan et al. 2003).  Apoptosis is an ordered and 

active “suicide” form of cell death, whereas necrosis represents a more uncontrolled and 

passive outcome of failed cell homeostasis (Orrenius et al. 2003, Yuan et al. 2003). 

Frequently cell death occurs in a manner that cannot be classified as being purely 

apoptotic or necrotic. Sometimes the features of cell death differ so extensively from 

these two main types, that additional classifications are used. For example, destruction 

of the cell by its own lysosomal system has been suggested to represent a special form 

of cell death, i.e. autophagic cell death (Yuan et al. 2003, Assuncao Guimaraes and 

Linden 2004). Excitotoxic cell death is a form of cell death that is characterized by its 

distinct cell death-inducing stimulus. Neuronal cell death as a result of excitotoxicity is 

of particular importance, since this kind of cell death is involved in many pathological 

conditions of the nervous system (Lipton and Rosenberg 1994). 

 

2.1.1. Necrotic cell death 

 

Necrotic cell death has been traditionally regarded as a chaotic breakdown of cells 

occurring under intolerable conditions. However, recent studies have revealed, that 

similarly as previously observed in apoptosis, also necrosis seems to involve a limited 

number of biochemical cascades, although there is no molecular machinery especially 

evolved for this purpose (Syntichaki and Tavernarakis 2003, Yuan et al. 2003). Rather 

the cell death-inducing stimuli lead to destabilization of normal cellular activities. Once 

disturbed, these normal physiological processes become destructive and promote a 

cascade of events leading to cell death (Syntichaki and Tavernarakis 2003, Yuan et al. 
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2003). Necrosis usually takes place as a result of severe injury. Nevertheless, there are 

also several examples of necrotic cell death occurring during the normal course of 

development and tissue regulation (“programmed cell death”, PCD) (Proskuryakov et 

al. 2003, Assuncao Guimaraes and Linden 2004, Edinger and Thompson 2004).  

 

The morphological characteristics of necrosis include clumping of chromatin without 

any marked changes in its distribution, swelling of mitochondria, and local disruption of 

cellular membranes. Subsequently there is pronounced disintegration of organelles and 

membranes, disappearance of chromatin, and cell lysis (Lossi and Merighi 2003, Yuan 

et al. 2003). Generally necrosis involves a large number of cells that are often grouped 

together. As the contents of the cells are released into the surrounding tissue, necrosis is 

associated with an inflammatory response. The remains of the necrotic cells are 

eventually removed by phagocytosis (Lossi and Merighi 2003). 

 

Perturbation of cellular ion homeostasis, especially calcium homeostasis, has been 

closely linked with necrotic cell death. However, calcium-involving mechanisms are not 

specific for necrosis, as calcium is commonly associated with apoptosis as well (Leist 

and Nicotera 1999, Syntichaki and Tavernarakis 2003, Yuan et al. 2003). Normally 

calcium functions as a ubiquitous intracellular messenger, controlling the activity of a 

number of enzymes, ion channels, etc. The level of intracellular calcium is actively kept 

low when compared to the extracellular space and to the calcium stores within the 

endoplasmic reticulum (Alberts et al. 2002, Orrenius et al. 2003, Syntichaki and 

Tavernarakis 2003). Activation of calcium channels on the plasma membrane or in the 

endoplasmic reticulum leads to local elevations in the level of intracellular calcium. The 

mitochondria can buffer the intracellular calcium level by taking up the cation when the 

intracellular calcium concentration is high (Alberts et al. 2002, Syntichaki and 

Tavernarakis 2003, Duchen 2004). However abnormally intense calcium-mediated 

signaling can lead to pronounced activation of several cell death-associated enzymes 

such as proteases (calpain), lipases (phospholipase A2), nitric oxide synthase (NOS), 

kinases (protein kinase C), and phosphatases (calcineurin). Calcium also can evoke cell 

death via its effects on the mitochondria (Leist and Nicotera 1999, Orrenius et al. 2003, 

Wu et al. 2004). 
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Several proteases are known to be involved in necrotic cell death. Induction of the 

calcium-activated calpain proteases frequently occurs during necrosis (Wang 2000, 

Syntichaki and Tavernarakis 2003). One important group of necrosis-associated calpain 

targets are the cytoskeletal proteins, such as αII-spectrin, the microtubule-associated 

protein tau, and tubulin (Wang 2000, Rami 2003). During necrosis, also the lysosomal 

cathepsin proteases can leak into the cytosol, possibly due to calpain-mediated 

destabilization of lysosomal membrane integrity, or following damage to the lysosomal 

membranes by free radicals (Nakanishi 2003, Syntichaki and Tavernarakis 2003). Also 

the caspase proteases, traditionally associated with apoptotic cell death, can be activated 

during necrosis. This possibly occurs due to leakage of caspase activating factors from 

damaged mitochondria, or by calpain or cathepsin mediated cleavage. Indeed, a 

complex cascade of protease activation may take place also during necrosis (Syntichaki 

and Tavernarakis 2003). 

 

The mitochondria are the major source of ATP within the cell. Disturbed mitochondrial 

function, such as that commonly occurring during necrosis, leads to depletion of energy, 

as well as to production of reactive oxygen species (ROS). Leakage of electrons from 

the mitochondrial electron transport chain promotes formation of ROS such as 

superoxide ions (O2
-) and H2O2 (Proskuryakov et al. 2003, Duchen 2004). Another 

cellular ROS is nitric oxide, a diffusible free radical second messenger, produced by the 

enzyme, NOS. Importantly, the neuronal NOS isoform (nNOS) is regulated in a 

calcium-dependent manner (Davis et al. 2001, Duchen 2004). Excessive levels of ROS 

can induce damage to proteins, lipids, and nucleic acids. In mitochondria, ROS, 

especially when combined with an elevated level of intracellular calcium, contribute to 

cell death by promoting the opening of a non-specific mitochondrial pore, called the 

permeability transition pore (PTP) (Orrenius et al. 2003, Duchen 2004, Gunter et al. 

2004). Opening of the PTP results in mitochondrial depolarization, and subsequently to 

increased permeability of the outer mitochondrial membrane such that even large for 

protein molecules can leak into the cytosol (Gulbins et al. 2003, Duchen 2004). 
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2.1.2. Apoptotic cell death 

 

Apoptosis was originally described as cell death characterized morphologically by 

cellular shrinkage in the presence of maintained organelle integrity, condensation of 

nuclear chromatin, plasma membrane blebbing, cellular fragmentation, and 

phagocytosis of the remaining apoptotic bodies by neighboring cells (Kerr et al. 1972). 

Later, also certain biochemical hallmarks of apoptosis, such as activation of caspase-

proteases and oligonucleosomal cleavage of chromatin, have been described (Zakeri and 

Lockshin 2002, Friedlander 2003, Edinger and Thompson 2004). The majority of PCD 

occurs by apoptosis, and it is frequently detected also in pathological situations 

(Friedlander 2003, Lossi and Merighi 2003). 

 

Apoptosis is an active process requiring energy and usually also synthesis of new 

proteins. Apoptosis can be triggered be several factors e.g. external death-promoting 

factors, loss of external factors needed for survival, or signs of internal damage (Creagh 

et al. 2003, Benn and Woolf 2004). The initial intracellular events involved in 

transmitting and modulating the apoptosis-promoting signals vary considerably 

depending on many factors as the initial stimulus and the cell type. Changes in calcium 

signaling, ROS production, kinase activities, gene expression, and mitochondrial 

function commonly take place (Friedlander 2003, Benn and Woolf 2004). Nevertheless, 

the downstream cellular machinery which integrates the pro-apoptotic and anti-

apoptotic signals, and subsequently executes the apoptotic program, is quite stereotypic 

and rather well conserved during evolution (Creagh et al. 2003, Friedlander 2003, Lossi 

and Merighi 2003, Yuan et al. 2003). Once the critical executioners of apoptosis have 

been activated, the process continues by ordered degradation of DNA into 

oligonucleasomal fragments, and disassembly of cellular structures. Since the remains 

of the cells are removed by phagocytosis and the cellular contents are not released to the 

surrounding tissue, there is no inflammation associated with apoptotic cell death 

(Creagh et al. 2003, Friedlander 2003, Assuncao Guimaraes and Linden 2004). 

 

Activation of the caspase family of proteases (cysteine-dependent aspartate-specific 

proteases) is regarded as being an important step in the commitment to apoptotic cell 
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death (Creagh et al. 2003, Sprick and Walczak 2004). The caspases constitute a step 

where the best established apoptosis-associated biochemical pathways converge, 

although it should be noted that the caspases can also be bypassed during the course of 

apoptosis (Orrenius et al. 2003, Assuncao Guimaraes and Linden 2004). The caspases 

exist in the cytosol as inactive zymogens (procaspases), and the upstream initiator 

caspases (caspase-2, -8, -9, and -10) are activated as a result of pro-apoptotic signaling. 

Once activated, the initiator caspases activate the downstream effector caspases 

(caspase-3, -6, and -7) in a cascade-like manner (Creagh et al. 2003, Sprick and 

Walczak 2004). The effector caspases themselves cleave key enzymes, structural 

proteins, and regulatory proteins, in addition to activating additional destructive 

enzymes (Earnshaw et al. 1999, Creagh et al. 2003). The most widely recognized 

pathways leading to caspase activation, e.g. the mitochondrial pathway activating 

caspase-9, and the death receptor pathway involving caspase-8, are briefly described 

below.  

 

The mitochondria have a key role in integrating pro- and anti-apoptotic signals from a 

variety of sources. The balance between pro-apoptotic (e.g. Bax, Bak, Bid, Bad, Bim) 

and anti-apoptotic (e.g. Bcl-2 and Bcl-xL) members of the Bcl-2 family of proteins 

contributes to the control of the mitochondrial PTP (Bortner and Cidlowski 2002, 

Akhtar et al. 2004, Benn and Woolf 2004, Green and Kroemer 2004). Once the PTP is 

opened, there is an increase in the permeability of the outer mitochondrial membrane, 

and release of several pro-apoptotic proteins from the mitochondria (Gulbins et al. 

2003, Hajnoczky et al. 2003, Benn and Woolf 2004). When cytochrome c, a member of 

the mitochondrial electron transport chain, is released into the cytosol, it forms a 

complex called the apoptosome together with apoptosis protease-activating factor-1 

(Apaf-1), procaspase-9, and dATP. This complex activates caspase-9, leading to 

induction of downstream caspases (Friedlander 2003, Gulbins et al. 2003, Benn and 

Woolf 2004). Apoptosis induced by many stress stimuli involve mitochondria at an 

early stage. The stimuli can alter the balance between pro- and anti-apoptotic Bcl-2 

family proteins, by affecting gene expression or by inducing changes at the protein level 

(e.g. by protein-protein interactions, altered phosphorylation, or by proteolysis) 

(Gulbins et al. 2003, Akhtar et al. 2004, Benn and Woolf 2004). Several stress stimuli 
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can also increase the concentration of intracellular free calcium, as frequently occurs 

during apoptosis. Excessive influx of calcium to the mitochondria promotes opening of 

the PTP, disruption of mitochondrial membrane potential, and the generation of  ROS 

(Hajnoczky et al. 2003, Orrenius et al. 2003). 

 

Some members of the tumor necrosis factor (TNF) receptor superfamily are called death 

receptors (DRs) due to their ability to activate pro-apoptotic intracellular signaling. 

These receptors include Fas, TNFR1, DR3, DR4, DR5, and DR6 (Curtin and Cotter 

2003). Once the ligand binds to its binding site, the receptors oligomerize, and recruit an 

intracellular signaling complex, promoting activation of procaspase-8 (Curtin and 

Cotter 2003, Benn and Woolf 2004, Sprick and Walczak 2004). In some cell types, the 

activation of the caspase-8 is sufficient to activate downstream effector caspases. In 

other cell types, activation of caspase-8 leads to cleavage of the Bcl-2 family member 

Bid, which promotes apoptosis through the mitochondrial apoptotic pathway (Scaffidi et 

al. 1998, Curtin and Cotter 2003, Benn and Woolf 2004, Sprick and Walczak 2004). 

Activation of death receptors is a common trigger of PCD in different tissues. With 

respect to neuronal cells, up-regulation of Fas-ligand expression occurs in response to a 

deficiency of neurotrophic factors, and Fas activation seems to be obligatory for 

apoptosis induced by trophic factor deprivation in several types of neuronal cells (Le-

Niculescu et al. 1999, Raoul et al. 1999).  

 

Although necrosis and apoptosis have been classically regarded as distinct and separate 

processes, there does appear to be a partial overlap in the molecular mechanisms 

underlying these two types of cell death. Whether the partly shared biochemical 

processes give rise to an apoptotic or necrotic morphological pattern, may be 

determined by factors like the intensity and duration of the original stimulus (Bonfoco 

et al. 1995, Syntichaki and Tavernarakis 2003, Benn and Woolf 2004). The 

mitochondria are believed to play an important role in the decision making process. It 

has been proposed that opening of the mitochondrial PTP only in a few mitochondria 

would result in lysosomal degradation of the affected mitochondria by autophagy. 

However, when more mitochondria become involved, the process would culminate in 
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apoptosis, and when the PTP opens in virtually all mitochondria of the cell, the result 

would be profound depletion of ATP followed by necrosis (Lemasters et al. 1998). 

 

2.1.3. Autophagic cell death 

 

The term autophagy refers to a process where a proportion of the cellular cytoplasm is 

engulfed into a double-membrane vesicle, and the resulting autophagosome is 

subsequently fused with a lysosome to permit degradation of its contents by lysosomal 

hydrolytic enzymes (Yuan et al. 2003, Marino and Lopez-Otin 2004, Shintani and 

Klionsky 2004). Autophagy occurs as a means to resist starvation, as well as for 

degradation of dysfunctional organelles and other cytoplasmic components (Yuan et al. 

2003, Marino and Lopez-Otin 2004, Shintani and Klionsky 2004). Additionally, 

extensive autophagy may lead to a special form of cell death, i.e. autophagic cell death. 

 

The most prominent feature of autophagic cell death is the appearance of large 

autophagic vacuoles. When most of the cytoplasm has been destroyed by autophagy, 

there is induction of apoptotic markers and phagocytosis of the cell remnants as in 

classical apoptosis. However, the apoptotic phase of cell death is short and markedly 

delayed (Clarke 1990, Zakeri and Lockshin 2002). The induction of autophagy appears 

to be regulated by the phosphatidylinositol-3-kinases (PI3Ks) though other factors are 

also involved. In nutrient rich conditions, signaling involving class I PI3K and the Akt-

kinase can activate mTor, which arrests autophagy. During starvation, this pathway is 

inhibited, whereas the activity of class III PI3K promotes membrane events associated 

with autophagosome formation (Marino and Lopez-Otin 2004, Shintani and Klionsky 

2004). There are several examples of cell death involving autophagic events in the 

absence of any significant apoptotic features. Also, in some cases cell death is reduced 

in cultured cells when autophagy is inhibited (Assuncao Guimaraes and Linden 2004, 

Marino and Lopez-Otin 2004). However, there is still debate on whether autophagy 

produces a special form of cell death, or is merely a non-causative, or even survival-

promoting, phenomenon occurring during cell death in some stressful conditions (Yuan 

et al. 2003, Edinger and Thompson 2004). Future research on autophagy will provide 

better tools to be used in the evaluation of the role of autophagy in cell death. 
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2.1.4. Glutamate excitotoxicity 

 

The term excitotoxicity refers to toxicity caused by abnormally intense stimulation of 

receptors activated by excitatory neurotransmitters. Glutamate is the major mediator of 

excitatory neurotransmission in the brain, and therefore it is not surprising, that 

glutamate is also the most important inducer of excitotoxicity (Dingledine et al. 1999, 

Arundine and Tymianski 2003). Glutamate excitotoxicity frequently occurs following 

acute insults such as brain ischemia, trauma, or epileptic seizures, and it is believed to 

be involved also in several neurodegenerative disorders (Lipton and Rosenberg 1994). 

Glutamate excitotoxicity may take place when the level of extracellular glutamate is 

elevated due to increased release, or decreased uptake of the neurotransmitter. Cell 

death due to glutamate excitotoxicity can occur with both necrotic and apoptotic 

mechanisms (Bonfoco et al. 1995, Lankiewicz et al. 2000, Zipfel et al. 2000). 

 

The cellular effects of glutamate are mediated by three different classes of ionotropic 

glutamate receptors, as well as by metabotropic glutamate receptors (mGluRs) (Siegel et 

al. 1999, Arundine and Tymianski 2003). In general, the ionotropic receptors have an 

agonist-binding site and the associated ion channel in the same macromolecular 

complex. The ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 

(AMPA), and kainate classes of glutamate receptors are collectively called “non-

NMDA” receptors due to their structural similarity and overlapping pharmacological 

properties. Binding of glutamate to the extracellular part of the receptor opens the 

receptor ion channel. However the ion fluxes are soon terminated by a conformational 

change occurring in the receptor (desensitization) (Dingledine et al. 1999, Siegel et al. 

1999). At the normal resting potential, the N-methyl-D-aspartate (NMDA) class of 

ionotropic glutamate receptors do not efficiently respond to glutamate due to blockage 

of the receptor ion channel by a magnesium ion. When the plasma membrane is 

depolarized, for instance due to high activity of the non-NMDA receptors, the 

magnesium block of the NMDA receptors is removed, and the receptor becomes 

permeable to ions (Kandel et al. 1995, Dingledine et al. 1999, Siegel et al. 1999). The 

mGluRs are structurally and functionally distinct from the ionotropic receptors. The 
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mGluRs are G-protein coupled receptors, and they mediate their effect by affecting 

intracellular signaling molecules, such as phospholipase C or adenylyl cyclase, rather 

than by directly controlling the activity of ion channels (Siegel et al. 1999). 

 

As described in the previous chapters, excessive increase in the level of intracellular 

calcium activates several downstream events, which contribute to both necrotic and 

apoptotic cell death. In glutamate excitotoxicity, the role of calcium is critical (Choi 

1987). The post-synaptic signaling induced by glutamate receptor activation results in 

an increased intracellular calcium level via several different mechanisms. Activation of 

the non-NMDA receptors leads to influx of sodium causing depolarization. However, 

some non-NMDA receptors are also permeable to calcium (Tanaka et al. 2000, 

Arundine and Tymianski 2003). The glutamate-induced depolarization also leads to 

calcium influx due to opening of voltage-sensitive calcium channels (VSCC) in the 

plasma membrane (Leist and Nicotera 1999, Arundine and Tymianski 2003). Under 

depolarized conditions, glutamate activates also the NMDA receptors. These receptors 

cause further sodium influx, and are potent activators of calcium-dependent intracellular 

signaling due to their high calcium permeability (Kandel et al. 1995, Aarts and 

Tymianski 2003, Arundine and Tymianski 2003). The mGluRs are also able to increase 

the level of intracellular calcium by provoking mobilization of calcium from the 

endoplasmic reticulum (Siegel et al. 1999). The quantity of calcium influx alone does 

not seem to predict the extent of cell death. Also the route of calcium influx may 

determine whether the excitotoxicity-associated events take place. Calcium influx 

through the NMDA receptors is considered to be particularly important with respect to 

glutamate excitotoxicity, possibly due to the close association of the receptors with 

certain mediators of calcium-activated signaling, such as nNOS (Sattler et al. 1998, 

Arundine and Tymianski 2003, Duchen 2004). However, in some conditions also the 

AMPA receptors may play a predominant role. 

 

2.1.5. Cell death in disorders of the nervous system 

 

Neuronal cell death is a feature of several neuropathological conditions. After acute 

insults, such as stroke, traumatic brain injury, or epileptic seizures, there is immediate 
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and extensive loss of neurons followed by delayed cell death when cells are lost at a 

slower rate. Also several neurodegenerative disorders, such as AD, PD, ALS, or 

Huntington’s disease, are characterized by neuronal loss, which generally occurs in a 

slow and progressive manner. Cell death occurring under these conditions, especially in 

stroke and neurodegenerative tauopathies, will be discussed in more detail below. 

 

The two main types of strokes are ischemic stroke and hemorrhagic stroke. The 

majority of the strokes are ischemic resulting from a severe reduction in cerebral blood 

flow (Bramlett and Dietrich 2004). As the energy metabolism of the brain is almost 

exclusively dependent on oxidation of glucose, the shortage of oxygen and glucose 

during ischemia leads to rapid depletion of ATP stores. Neurons need a continuous 

supply of energy for instance to maintain the ionic gradients responsible for polarization 

of their plasma membrane. Once the neuron is depolarized, there is influx of calcium 

through the voltage-sensitive channels, and subsequent release of neurotransmitters, 

such as glutamate, at the synaptic region. Also the re-uptake of glutamate is impaired 

due to energy depletion, and thus the level of extracellular glutamate is increased 

(Dirnagl et al. 1999, Bramlett and Dietrich 2004). There is a prominent role for 

glutamate excitotoxicity in ischemia. This has been demonstrated by the protective 

effect of glutamate receptor antagonists in animal models of ischemia (Simon et al. 

1984, Ozyurt et al. 1988, Buchan et al. 1991). The cell death during ischemia occurs by 

both necrosis and apoptosis. In animal models of ischemia, calpain inhibition efficiently 

prevents cell death (Bartus et al. 1994), pointing to an important role for necrosis-

associated phenomena. Morphological analysis also indicates that necrosis indeed is the 

predominant mechanism of cell death after ischemia (Li et al. 1998). However, also 

indicators of apoptosis have been found in ischemia (e.g. translocation of Bax to the 

mitochondria, release of cytochrome c from the mitochondria, increased expression of 

death receptors and their ligands, caspase-3, -8, and -9 induction, and internucleosomal 

DNA fragmentation), and interfering with several mediators of apoptosis has reduced 

the size of the infarct (Ferrer and Planas 2003, Liou et al. 2003). Further, there is also 

morphological evidence indicative of autophagy induction in ischemia (Nitatori et al. 

1995). 
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In chronic neurodegenerative disorders, the underlying cause, as well as the course of 

cell death, is very difficult to evaluate. The amount of mechanistic information that can 

be obtained with human postmortem brain material is limited, and the available material 

often represents the late stages of the disease being contaminated by a significant extent 

of secondary pathology. There is also a shortage of good experimental models. 

Although neurodegenerative disorders constitute a heterogeneous group of diseases, 

there are certain common features in their neuropathology. This suggests that there 

might also be similarities in the mechanisms of cell death. One of the most conspicuous 

features in the neuropathology of neurodegenerative disorders is the presence of large 

protein aggregates either inside the neuronal and/or glial cells, or in the extracellular 

space (Shastry 2003, Ross and Poirier 2004). The main protein components of some of 

these aggregates are presented in table 1. The aggregating proteins generally form long 

filamentous protein polymers often rich in β-sheet conformation, and the proteins also 

contain similar post-translational modifications (ubiquitinylation, phosphorylation, 

oxidation, proteolytic truncation etc.) (Ross and Poirier 2004). It is conceivable that 

these modifications might have a role in the aggregation process. The close association 

of protein aggregation and neuronal degeneration is supported by the fact that mutations 

in the main protein species of the aggregates are the most common causes of 

dominantly inherited rare forms of these degenerative disorders (Ross and Poirier 

2004). However, there is still debate, whether the voluminous protein aggregates are 

actually the cause of cellular degeneration, or may even represent a protective structure 

sequestering the more hazardous but poorly discernible aggregation intermediates (Tran 

and Miller 1999, Ross and Poirier 2004). Whatever the case, research on the upstream 

events of protein aggregation might unravel events that are more closely linked to the 

cell death in neurodegenerative disorders than the presence of the hallmark aggregates 

per se. In addition to protein aggregation, oxidative stress, proteasomal dysfunction, 

excitotoxicity, and mitochondrial injury have been linked with several 

neurodegenerative disorders (Bossy-Wetzel et al. 2004). 
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Table 1. Protein aggregation in some neurodegenerative diseases 

Disease Characteristic pathology Main protein components 
   
AD Neuritic plaques 

Neurofibrillary tangles 
Aβ peptide 
Hyperphosphorylated tau 

   
PD Lewy bodies α-Synuclein 
   
ALS Ubiquitinated inclusions, 

Bunina bodies and hyaline 
bodies 

Superoxide dismutase 1?, 
neurofilaments? 

   
Huntington’s disease Intranuclear inclusions and 

cytoplasmic aggregates 
Huntingtin 

   
Prion diseases Spongiform degeneration, 

amyloid, other aggregates 
Prion protein 

Data from references: (Wood et al. 2003, Ross and Poirier 2004).  

 

Tauopathies are a group of neurodegenerative disorders characterized by the presence of 

intracellular (neuronal and glial) aggregates consisting mainly of filamentous polymers 

of the microtubule-associated protein tau. The most common form of tau-aggregate is 

the neurofibrillary tangle (NFT) (Buee et al. 2000, Lee et al. 2001). Normally tau 

promotes microtubule assembly, stabilizes microtubules, and facilitates the interaction 

of microtubules with other proteins and cellular elements (Buee et al. 2000). The 

sequence of events leading to pathology-associated tau accumulation, filament 

assembly, and formation of inclusions is still poorly understood. One common finding 

in neurodegenerative tauopathies is that tau accumulates in an abnormally 

hyperphosphorylated form. Indeed alterations in the phosphorylation of tau seem to 

occur prior to, or at least concomitant with, aggregation and cellular degeneration 

(Braak et al. 1994). Several kinases (e.g. glycogen synthase kinase 3 and cdk5) have 

been incriminated in the disease-associated tau hyperphosphorylation (Yamaguchi et al. 

1996, Lee et al. 2001). Hyperphosphorylation might detach tau from the microtubules, 

and it could also promote the self-assembly of tau (Buee et al. 2000, Alonso et al. 2001, 

Lee et al. 2001, Avila et al. 2004). Tau polymerization may additionally be promoted by 

other covalent modifications, and by aggregation-promoting intracellular molecules 

(Buee et al. 2000, Avila et al. 2004). A causative role for aberrant tau biology in 

neurodegeneration is suggested for instance by the fact that mutations in the tau gene 
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give rise to a clinically heterogenous group of disorders referred to as frontotemporal 

dementia with parkinsonism linked to chromosome 17 (FTDP-17). The disease-

associated tau mutations have been suggested to promote tau pathology by reducing the 

binding of tau protein to microtubules, by promoting the assembly of tau into filaments, 

or by altering the relative amounts of different tau splice isoforms (Buee et al. 2000, Lee 

et al. 2001). However it should be noted, that there are also families having hereditary 

frontotemporal dementia with linkage to chromosome 17, displaying tau-negative 

inclusions and lacking mutations in the tau gene (van Swieten et al. 2004). 

 

Although there are common features in the neuropathology of tauopathies, these 

disorders differ for instance in the tau phosphorylation patterns, accumulating tau splice 

isoforms, tau filament and inclusion morphologies, affected cell types and brain regions, 

as well as in the clinical manifestation (Buee et al. 2000, Lee et al. 2001, Avila et al. 

2004). AD is the most common tauopathy as well as the most common form of 

dementia. In some rare cases AD is caused by dominantly inherited gene mutations. 

However, the etiology of sporadic AD is poorly understood. Two different types of 

protein aggregates are found in the brains of patients suffering from AD. In addition to 

the intracellular NFTs, there are extracellular amyloid plaques, which are aggregates 

composed mainly of β-amyloid, a peptide enzymatically released from a larger amyloid 

precursor protein (APP) (Odle 2003, Bossy-Wetzel et al. 2004, Mattson 2004). Both 

NFTs and plaques are related to the cognitive deficiency in AD. However, the presence 

of these mature protein aggregates relatively poorly correlates with neuropsychological 

tests of cognitive function. For instance, the density of synapses is far more closely 

associated with the cognitive symptoms (Terry et al. 1991). The fact that only a minor 

proportion of the cells is actually undergoing cell death at any given time in the brains 

of AD patients, makes it difficult to estimate the predominant mechanisms of cell death. 

The biochemical evidence, such as activation of caspase-proteases, point to the 

activation of apoptotic mechanisms in AD (Raina et al. 2003, Dickson 2004, Mattson 

2004). However, there is a shortage of morphological evidence for completion of the 

apoptotic program (Stadelmann et al. 1998, Stadelmann et al. 1999, Raina et al. 2003). 

There is also evidence for elevated lysosomal activity and autophagy in AD, paralleling 

the findings in some other neurodegenerative disorders (Yuan et al. 2003, Nixon et al. 
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2005). Whether these changes in neurodegenerative disorders, such as AD, represent an 

effort to remove potentially hazardous intracellular protein aggregates, or significantly 

contribute to neuronal demise, remains unclear. Nonetheless, the neuronal cell loss in 

AD is likely to be promoted by certain features of the disease e.g. oxidative stress, 

impaired cellular energy metabolism, dysregulated calcium homeostasis, excitotoxicity, 

and inflammation (Danysz et al. 2000, McGeer and McGeer 2003, Mattson 2004). 

 

2.2. The cyclin-dependent kinase 5 (cdk5) 

 

Cdk5 (alternative names: neuronal cdc2-like kinase, tau protein kinase II, PSSALRE) is 

a proline-directed serine/threonine protein kinase originally discovered based on its 

homology with the p34cdc2 (cdk1) kinase (Meyerson et al. 1992). Cdk5 is inactive unless 

bound to cdk5-specific activator proteins p35 or p39 (Lew et al. 1994, Tsai et al. 1994, 

Tang et al. 1995), which represents a common theme in cdk regulation. Generally the 

cyclin-dependent kinases are involved in regulation of cell cycle progression. However 

the predominant expression of cdk5, and more strikingly of the cdk5 activator proteins, 

in post-mitotic neurons immediately led to the suggestion that this kinase possesses 

functions distinct from cell cycle regulation (Hellmich et al. 1992, Tsai et al. 1994, 

Tang et al. 1995). Indeed, cdk5 has been claimed to have a role in the development of 

the nervous system, in learning and memory, in synaptic signaling, and in regulation of 

cell biological events with special importance in the neuronal cells. Functional 

alterations in cdk5 have been suggested to contribute to neuronal cell death in 

neuropathological conditions. Although neurons are the predominant cell type with 

cdk5 activity, also non-neuronal functions for cdk5 have been proposed. The following 

review, however, will concentrate on the biology of cdk5 in the neuronal environment. 

 

2.2.1. Structure of cdk5 and its activator proteins 

 

The human cdk5, p35, and p39 genes are transcribed to single mRNA species encoding 

for proteins of 291, 307 and 367 amino acids, respectively. The primary structure of 

cdk5 protein is highly homologous to some other cyclin-dependent kinases, being 57 % 
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and 60 % identical, respectively, with cdc2 and cdk2 (Meyerson et al. 1992). The p35 

and p39 proteins are 57 % identical (Tang et al. 1995). They do not appear to have 

significant sequence homology with other proteins, apart from the marginal homology 

with the cyclin box employed by various cyclins to interact with their cdk partners (Lew 

et al. 1994, Tsai et al. 1994, Tang et al. 1995). Nevertheless, the overall tertiary 

structure of the large C-terminal globular domain of p35 resembles that of cyclins 

(Tarricone et al. 2001). Both p35 and p39 contain N-terminal myristoylation signals, 

and indeed both proteins are preferentially found attached to membranes (Patrick et al. 

1999, Patzke and Tsai 2002). Also, the N-terminal parts of p35 and p39 are likely less 

tightly structured, and may act in protein-protein interactions (Tarricone et al. 2001). A 

large number of proteins do interact with p35 and/or p39, and it has been suggested that 

the activator proteins might also function as adaptors, targeting cdk5 to large molecular 

complexes, and to the vicinity of its substrates (Lim et al. 2003). 

 

2.2.2. Regulation of cdk5 

 

Regulation of cdk5 takes place at several different levels. There are significant 

alterations in the protein expression of cdk5 and its activator proteins during  neuronal 

differentiation and development of the nervous system, as well as in conditions 

associated with neuronal growth and plasticity. Post-translational mechanisms, such as 

phosphorylation of cdk5, and proteolytic degradation and truncation of cdk5 activators, 

provide more rapid mechanisms for the regulation of cdk5. The role of p35 activator 

protein in cdk5 regulation has been much more extensively studied than that of p39. 

Although there seems to be similarities in the post-translational mechanisms employed 

in the regulation of p35 and p39, there are evident differences e.g. in their temporal and 

spatial expression patterns.  

 

Cdk5, p35, and p39 protein expression.  The protein expression levels of cdk5, p35, and 

p39 are markedly altered during the course of development of the central nervous 

system. Studies performed on rodents have revealed that especially the cdk5 activator 

proteins are highly neuron-specific, and they are first detected when the neurons 

become post-mitotic (Tsai et al. 1993, Tsai et al. 1994, Zheng et al. 1998). The level of 
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cdk5 progressively increases during the development of the nervous system, and 

maximum expression is detected in the adult brain (Kobayashi et al. 1993, Tsai et al. 

1993). Expression of cdk5 is observed throughout the brain with the highest levels 

being found in the hippocampus and mesencephalon (Delalle et al. 1997). Also the p35 

level increases during the course of brain development, peaking at the time of birth. 

However, p35 is downregulated soon after birth, although p35 expression remains high 

in some specific brain regions, such as the hippocampus (Uchida et al. 1994, Tomizawa 

et al. 1996). The expression of p39 differs temporally and spatially from that of p35, 

being low during early development. However, between one to three weeks after birth, 

p39 is highly expressed throughout the brain, whereas in mature brains, p39 expression 

is relatively restricted to the cerebellum (Cai et al. 1997). Subcellularly cdk5 is localized 

to cell bodies in the developing nervous system, whereas in adult rodents, cdk5 is 

predominantly present in the axons, and detectable also in nuclei (Tsai et al. 1993, Ino 

and Chiba 1996, Matsushita et al. 1996, Tomizawa et al. 1996). In cultured cerebellar 

macroneurons cdk5, is especially concentrated at the distal tips of growing axons 

(Pigino et al. 1997). However, p35 mainly locates to the cell bodies and dendrites, and 

axonal p35 is only detectable during the development and soon after birth (Matsushita et 

al. 1996, Tomizawa et al. 1996). Also p39 may be more abundant in the neuronal 

somata and dendrites than in axons of the adult rat brain (Honjyo et al. 1999, Jeong et 

al. 2003). Nevertheless, in cultured neuronal cells at least p35 is also present in the 

growth cones of axons (Paglini et al. 1998). 

 

The presence of cdk5 activator proteins only in post-mitotic neurons suggests that 

neuronal differentiation could activate the expression of these proteins. This is 

supported by upregulation of cdk5, p35, and p39 in cultured cell lines when neuronal 

differentiation is induced by retinoic acid (Fu et al. 2002, Haque et al. 2004, Lee and 

Kim 2004). Also neurotrophic factors stimulate p35 expression in cultured neurons and 

PC12 cells (Tokuoka et al. 2000, Harada et al. 2001). Further, when neurons are 

cultured on laminin, an extracellular matrix protein capable of stimulating axonal 

extension, p35 protein expression, but not p39 expression, is induced. This is associated 

with redistribution of p35 and cdk5 to the axonal growth cones (Pigino et al. 1997, 

Paglini et al. 1998). Additionally, increased neuronal activity and plasticity in vivo have 
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been observed to be associated with upregulation of cdk5 or p35 proteins, e.g. this has 

been detected following chronic electroconvulsive seizures (Chen et al. 2000), during 

kindling progression (Tomizawa et al. 2000), axonal regeneration (Namgung et al. 

2004), associative learning (Fischer et al. 2002), and in conjugation with the adaptive 

changes following chronic cocaine exposure (Bibb et al. 2001a). Changes in the protein 

levels of cdk5 and/or its activators have been also observed during the course of 

neuronal cell death and in various neuropathological conditions, as will be discussed 

later. 

 

Degradation of cdk5 activator proteins.  A common feature in the regulation of cyclin-

dependent kinases is a controlled degradation of the regulatory cyclin proteins by the 

ubiquitin-proteasome pathway at a certain stage of the cell cycle. Although cdk5 mainly 

functions in non-dividing cells, a similar molecular mechanism may be employed in the 

regulation of cdk5. p35 has been observed to be a short-lived protein, which is degraded 

after its ubiquitination by the ubiquitin-proteasome pathway. Phosphorylation of p35 by 

cdk5 appears to favor p35 degradation (Patrick et al. 1998, Saito et al. 2003). The cdk5-

induced degradation of p35 might have an autoregulatory role by providing a means for 

negative feedback regulation of cdk5 activity. Also, the level of p35 phosphorylation, 

and the rate of its proteasomal degradation, is higher in fetal rat brain tissue than in 

adult tissue, findings which suggest that p35 degradation could be developmentally 

regulated (Saito et al. 2003).  

 

Calpain-mediated cleavage of the cdk5 activator proteins.  The cdk5 activator proteins 

p35 and p39 have been found to be cleaved to smaller p25 and p29 fragments, 

respectively, by the calcium-activated calpain-protease (Kusakawa et al. 2000, Lee et al. 

2000, Patzke and Tsai 2002). In accordance with the observed activation of calpain 

during cell death, cleavage of the cdk5 activator proteins is often detected in neurotoxic 

conditions in vitro and in vivo, especially when a prominent calcium influx is known to 

be involved (Kusakawa et al. 2000, Lee et al. 2000, Nath et al. 2000, Patzke and Tsai 

2002). However, activation of calpain is likely not to occur exclusively under conditions 

involving cell death. Calpain has been implicated in remodeling of cytoskeleton-

membrane attachments, in intracellular signal transduction, and in the cell cycle (Goll et 
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al. 2003). Calpain also seems to be participate in long-term potentiation (LTP) (Goll et 

al. 2003), an experimental model of learning and memory involving calcium-dependent 

enhancement of the post-synaptic responses following intense electrical stimulation. 

Indeed, the post-synaptic signaling evoked by the neurotransmitter glutamate induces 

calpain-mediated cleavage of the cdk5 activator proteins during excitotoxic conditions 

(Lee et al. 2000, Patzke and Tsai 2002). However, the occurrence and possible role of 

glutamate-induced cleavage of cdk5 activators in physiological conditions remains to be 

demonstrated. Also the properties of the substrate appear to affect the rate of the 

calpain-mediated cleavage. Cdk5-induced phosphorylation of p35 reduces calpain-

mediated p35-cleavage, again suggesting possible autoregulation. Accordingly, p35 

cleavage is suppressed in fetal brain tissue where the level of p35 phosphorylation is 

high (Saito et al. 2003).  

 

The calpain-mediated cleavage of the cdk5 activator proteins has several types of effects 

on the function of cdk5. The p25 fragment of p35 contains the globular domain 

responsible for cdk5 binding and activation. However, it has lost the less ordered N-

terminal part of p35, which harbors the myristoylation site, and which may mediate the 

interactions between p35 and other proteins (Poon et al. 1997, Patrick et al. 1999, 

Tarricone et al. 2001, Amin et al. 2002). Due to the loss of myristoylation, both p25 and 

p29 are preferentially located in the cytosol, in contrast to p35 and p39, which are 

predominantly membrane bound (Patrick et al. 1999, Kusakawa et al. 2000, Lee et al. 

2000, Patzke and Tsai 2002). Thus the cleavage of the activator proteins results in a 

qualitative change in cdk5 function, and the kinase is allowed access to an alternative 

subset of substrates. Calpain also provokes a quantitative change in cdk5 activity, as 

p25 activates cdk5 more effectively than p35 (Patrick et al. 1999, Amin et al. 2002). 

Further, the p25 and p29 proteins have markedly increased half-lives when compared to 

the uncleaved proteins (Patrick et al. 1999, Patzke and Tsai 2002). It is possible that the 

calpain-cleaved cdk5 activator proteins can escape from the phosphorylation-induced 

proteasomal degradation which has been proposed as a mechanism of negative feedback  

regulation (Patrick et al. 1998). This could lead to constitutive kinase activity. 

 



 35

Regulation of cdk5 activity by phosphorylation.  The availability of cyclins is a major 

determinant of cdk activity. However, also phosphorylation is widely employed in the 

regulation of cdks. In this respect, cdk5 possesses some general features of cdk 

regulation, however there are also significant differences. In contrast to the other cdks, 

cdk5 is highly active also in the absence of phosphorylation (Qi et al. 1995). There is 

some controversy on whether phosphorylation of cdk5 by the cdk-activating kinase 

(CAK) on Ser159 at the activating T-loop (corresponding to Thr160 in cdk2 and Thr161 

in cdc2) actually alters cdk5 activity. CAK has been reported either to induce cdk5 

activity in vitro, or to have no effect (Poon et al. 1997, Rosales et al. 2003). Also casein 

kinase I (CKI) has been observed to phosphorylate Ser159 and to stimulate cdk5 

activity (Sharma et al. 1999b). Phosphorylation of cdk5/p35 by CKI has been 

implicated in the transient activation of cdk5 induced by a mGluR agonist in striatal 

slice cultures, although the phosphorylation site in this context has remained 

undetermined (Liu et al. 2001). At least two different kinases phosphorylate cdk5 on 

Tyr15. In contrast to other cdks, phosphorylation at Tyr15 enhances cdk5 activity. c-

Abl, a kinase involved in the development of the nervous system, phosphorylates Tyr15 

of cdk5, and this activity is enhanced by the putative adaptor protein Cables (Zukerberg 

et al. 2000). Phosphorylation of Tyr15 of cdk5 by the fyn kinase is involved in the 

signaling activated by semaphorin-3A, a guidance cue for axons and dendrites (Sasaki 

et al. 2002). Also signaling induced by ephrin-A5, a repulsive axonal guidance cue, 

evokes phosphorylation of cdk5 at Tyr15 by an unidentified kinase (Cheng et al. 2003). 

Phosphorylation of cdk5 at Thr14 by an unidentified kinase purified from the bovine 

thymus has been observed to inhibit cdk5 activity (Matsuura and Wang 1996). 

Nevertheless, phosphorylation of Thr14 has not been demonstrated in vivo. 

Phosphorylation of p35 does not seem to directly affect its ability to activate cdk5 (Saito 

et al. 2003). 

 

Regulation of cdk5 activity by binding of other proteins.  Several inhibitory proteins 

regulate the activity of cell cycle-associated cdks (Obaya and Sedivy 2002). However, 

cdk5 is not affected by the inhibitors modulating the activity of the other cdks (Lee et al. 

1996). Nevertheless, there are some reports suggesting that also cdk5 activity might be 

affected by binding of proteins other than p35 or p39, although this concept is not well 
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established. The present evidence suggests that proteins such as the ribosomal protein 

L34, DNA binding protein dbpA, casein kinase 2, and a previously uncharacterized C42 

protein possess the ability to bind to cdk5 or p35, and inhibit cdk5 activity (Moorthamer 

and Chaudhuri 1999, Moorthamer et al. 1999, Ching et al. 2002, Lim et al. 2004). 

Additionally, a nuclear protein SET appears to activate cdk5/p35 (Qu et al. 2002). The 

molecular mechanisms employed in the regulation of cdk5 are summarized in figure 1. 
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Figure 1. Summary of the molecular mechanisms employed in the regulation of cdk5. 
The figure shows the factors affecting p35/p39 and cdk5, and the proposed effects of 
these factors on protein function. 
 



 37

2.2.3. Biological functions of cdk5 

 

A large number of cdk5 substrates are known. In general, the cell biological functions of 

the cdk5 substrates are most often related to the cytoskeleton, synaptic vesicle 

trafficking, cellular adhesion, or to intracellular signal transduction. Via its involvement 

in these cell biological processes, cdk5 is able to participate in fundamental 

neurobiological events ranging from the development of the neuronal architecture to 

synaptic transmission. 

 

Neuronal migration and process outgrowth.  Studies performed on mice lacking cdk5, 

p35, or p39 have established an important role for cdk5 in the proper migration of 

neurons during the development of the nervous system. Mice lacking cdk5 suffer from 

developmental abnormalities related to defective neuronal migration in many brain 

areas including the cerebral cortex, hippocampus and cerebellum (Ohshima et al. 1996, 

Gilmore et al. 1998). In mice lacking p35, the defect in neuronal migration is more 

restricted involving mainly the cerebral cortex (Chae et al. 1997), whereas in mice 

deficient in p39 there are no obvious abnormalities (Ko et al. 2001). The target proteins 

and molecular mechanisms involved in the regulation of neuronal migration by cdk5 are 

still inadequately known. Cdk5 could affect migration by regulating the cytoskeleton, 

cellular adhesion, or the response to guidance cues (Gupta and Tsai 2003). 

 

Several studies suggest that cdk5 is needed for proper outgrowth of neuronal processes 

since prevention of the function of cdk5 significantly reduces the extent of process 

outgrowth in cultured neurons (Nikolic et al. 1996, Pigino et al. 1997). The response to 

some external growth promoting signals may be mediated through induced expression 

of p35 or p39 (Xiong et al. 1997, Paglini et al. 1998, Harada et al. 2001, Desbarats et al. 

2003). In addition, cdk5 is believed to be involved in the regulation of the direction of 

neuritic growth at the growth cones. There is evidence for defective axonal guidance in 

mice lacking p35 (Kwon et al. 1999), and the cellular responses to some guidance cues 

seem to be mediated in a cdk5-dependent manner (Ledda et al. 2002, Sasaki et al. 2002, 

Cheng et al. 2003). 
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Learning and memory.  In mice exposed to stressful conditions, the expression and 

activity cdk5 are induced in the fibers of septohippocampal cholinergic neurons. The 

cdk5 inhibitor butyrolactone I prevents associative learning related to context-dependent 

fear in these conditions (Fischer et al. 2002). Furthermore, mice overexpressing p25 at 

low level display improved performance in some tasks measuring learning and memory 

(Angelo et al. 2003). Cdk5 phosphorylates several substrates that could mediate an 

effect on learning and memory. The LTP-reducing effect of the cdk5 inhibitor 

roscovitine is thought to result from decreased NMDA-evoked currents when cdk5-

mediated phosphorylation of the NR2A subunit of the NMDA receptor is prevented (Li 

et al. 2001).  

 

Regulation of the cytoskeleton.  At the molecular level, many of the neurobiological 

actions of cdk5 are likely to be at least partly mediated through modulation of the 

neuronal cytoskeleton. In neurons, cdk5 has been shown to regulate all of the main 

cytoskeletal elements (microtubules, actin filaments, intermediate filaments) either by 

directly phosphorylating the structural components of the cytoskeleton, or by 

phosphorylating proteins regulating cytoskeletal dynamics. 

 

Cdk5 regulates microtubule dynamics in part via phosphorylation of microtubule-

associated proteins (MAPs). In general, the MAPs bind to microtubules, promote their 

assembly, stabilize them, and organize them into bundles. Tau is a MAP which is 

especially concentrated in axons. Cdk5 has been observed to bind to tau, and to 

phosphorylate it at several different sites (Ishiguro et al. 1992, Baumann et al. 1993, 

Sobue et al. 2000, Lund et al. 2001). In a cell-free system the cdk5-mediated 

phosphorylation of tau reduced the ability of tau to associate with microtubules, and 

prevented tau-induced promotion of microtubule polymerization (Wada et al. 1998). 

Additionally, suppression of cdk5 or p35 expression has been shown to decrease axonal 

elongation as well as to reduce the phosphorylation of MAP1b, another MAP, in the 

distal ends of growing axons of cerebellar macroneurons (Pigino et al. 1997, Paglini et 

al. 1998). Regulation of the microtubule cytoskeleton may be important with respect to 

the effect of cdk5 on neuronal migration. The proteins doublecortin, NUDEL, and focal 

adhesion kinase (FAK) have been suggested as cdk5 target candidates, that might 
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mediate the effect of cdk5 on neuronal migration in a microtubule-dependent manner 

(Niethammer et al. 2000, Sasaki et al. 2000, Xie et al. 2003, Tanaka et al. 2004). 

 

In neurons, an active site of actin filament assembly and disassembly are the growth 

cones, which are critical for elongation of the neurites. Interestingly, cdk5 promotes 

neurite outgrowth, and the cdk5, p35, and p39 proteins are concentrated at the edges of 

neuronal growth cones in the vicinity of actin filaments (Nikolic et al. 1996, Humbert et 

al. 2000). The best studied actin-associated target of cdk5 is the Pak1 kinase (Nikolic et 

al. 1998, Rashid et al. 2001), a Rac1 effector, which is involved in neurite outgrowth 

and growth cone collapse response (Nikolic 2002). 

 

In differentiated neurons, the main type of intermediate filaments are the neurofilaments 

(NFs), which are dynamic components of the axonal cytoskeleton. NFs  are involved in 

the maintenance of the axonal caliber. NF-H and NF-M contain C-terminal KSP-repeat 

motifs that are extensively phosphorylated in vivo, and which are targets for 

phosphorylation by cdk5 (Sun et al. 1996, Sharma et al. 1999a). Phosphorylation of NFs 

by cdk5 alters the intracellular distribution of NFs, and reduces the rate of axonal 

transport of these proteins (Ackerley et al. 2003, Shea et al. 2004). 

 

Regulation of cellular adhesion.  N-cadherin is an adhesion molecule having crucial 

roles during the development of the nervous system. In general, cadherin molecules 

form homophilic contacts with cadherins on adjacent cells, whereas the intracellular 

anchor proteins, catenins, connect these adhesion sites to the intracellular actin-

cytoskeleton. Cdk5-p35 has been observed to associate with the β-catenin–N-cadherin 

complex, and to phosphorylate β-catenin (Kwon et al. 2000, Kesavapany et al. 2001). 

Cdk5 activity decreases β-catenin–N-cadherin interaction and reduces cellular adhesion 

(Kwon et al. 2000). Decreased cdk5 activity evoked by depolarization of hippocampal 

neurons leads to redistribution of β-catenin from the dendritic shafts to the spines, an 

effect which is mimicked by the cdk5 inhibitor roscovitine (Schuman and Murase 

2003). 
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Regulation of synaptic vesicle release and endocytosis.  Cdk5 has been suggested to 

modulate several steps of synaptic vesicle trafficking in the presynaptic terminals. Cdk5 

phosphorylates the P/Q type VSCCs, and thereby inhibits calcium influx into the 

synaptic terminals following depolarization. This reduces the subsequent exocytosis of 

neurotransmitter-containing vesicles (Tomizawa et al. 2002). Cdk5 also binds to and 

phosphorylates Munc-18, which reduces the affinity of Munc-18 for syntaxin 1A, a 

plasma membrane receptor for synaptic vesicles. This has been suggested to allow 

syntaxin 1A to interact with proteins on the synaptic vesicles, and to promote 

neurotransmitter release (Shuang et al. 1998, Fletcher et al. 1999). Thus cdk5 seems to 

inhibit an early step in the synaptic vesicle release, and to augment a later step in the 

process. Synaptic vesicle endocytosis is triggered following dephosphorylation of key 

proteins by the calcium-dependent protein phosphatase, calcineurin. Cdk5 has been 

suggested to participate in the rephosphorylation of some of these proteins 

(amphiphysin I, dynamin I, synaptojanin 1) (Floyd et al. 2001, Tan et al. 2003, 

Tomizawa et al. 2003, Lee et al. 2004). 

 

Post-synaptic signaling.  Binding of dopamine to its receptors results either in 

stimulation or inhibition of cAMP production depending on which dopamine receptor 

type has been activated. A major downstream effector of cAMP is the protein kinase A 

(PKA). In addition to other substrates, PKA phosphorylates the protein phosphatase-1 

(PP-1) inhibitors DARPP-32 (dopamine and cAMP-regulated phosphoprotein, 32 kDa) 

and PP inhibitor-1. This leads to reduced PP-1 activity, and thereby to increased 

phosphorylation of other PKA substrates (Hemmings et al. 1984, Endo et al. 1996). In 

the striatum, cdk5 modulates dopamine signaling by negatively regulating the effects of 

PKA. Under basal conditions, cdk5 phosphorylates DARPP-32, and converts it into an 

inhibitor of PKA (Bibb et al. 1999). Additionally, cdk5 phosphorylates the PP inhibitor-

1, making it a poor substrate for PKA (Bibb et al. 2001b). When dopamine D1 receptors 

are activated, the cdk5 phosphorylation site of DARPP-32 becomes dephosphorylated 

by PP-2A, which abolishes the inhibitory effect of DARPP-32 on PKA (Nishi et al. 

2000). 
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Glutamate-induced cdk5 activation has been suggested to provoke feedback effects on 

post-synaptic glutamate signaling. Cdk5 phosphorylates the NR2A subunit of the 

NMDA class of glutamate receptors (Li et al. 2001). This appears to amplify NMDA-

mediated signaling, since inhibition of cdk5 activity by roscovitine can reduce NMDA 

evoked currents and LTP in hippocampal CA1 neurons (Li et al. 2001). Calpain 

activation might augment the cdk5-mediated effect on the NMDA receptor, as Cdk5-

p25 is more efficient than cdk5-p35 in inducing NR2A phosphorylation and NMDA 

evoked currents in transfected HEK293 cells (Wang et al. 2003). Cdk5 also 

phosphorylates PSD-95, a scaffolding protein that links the NMDA receptors to the 

cytoskeleton and to signaling molecules at the post-synaptic density. The cdk5-mediated 

phosphorylation reduces the self-association of PSD-95. This has been suggested to 

negatively regulate the synaptic clustering of its target proteins, such as NMDA 

receptors (Morabito et al. 2004). 

 

Stimulation of group I mGluRs in neostriatal slice cultures activates a signaling 

pathway involving inositol 1,4,5-triphosphate (IP3)-induced release of calcium from the 

endoplasmic reticulum. This causes calcineurin-mediated induction of CKI, and finally 

transient phosphorylation and activation of cdk5-p35 (Liu et al. 2002). Under these 

conditions, stimulation of mGluRs enhances cdk5-mediated DARPP-32 

phosphorylation as well as calcium influx through VSCCs in a manner dependent on 

cdk5 and DARPP-32 (Liu et al. 2001). 

 

2.2.4. Cdk5 in neuronal cell death and in neuropathological conditions 

 

Cdk5 has important functions throughout the life of neurons, and it may have a role 

during the death of these cells as well. When neurons encounter stressful conditions, 

there are significant changes in cdk5. With respect to human pathological conditions, 

elevated levels of cdk5 or its activator proteins are often detected in affected neurons. 

Also calpain-mediated cleavage of cdk5 activators, which produces increased activity 

and functional alterations in cdk5, has been suggested to occurr in several 

neuropathological conditions. There is an accumulating body of evidence suggesting 

that abnormally intense activation of cdk5 would promote neuronal death. Nevertheless, 
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some studies imply that induction of cdk5 could also support neuronal survival. It is 

conceivable that the preferential effect of cdk5 in stressful conditions might depend on 

factors like intensity, duration, and subcellular location of cdk5 activation, as well as on 

neuronal cell type, and on other factors determining the internal state of the cell. 

 

Alterations in cdk5 during neuronal death and in neuropathological conditions.  Studies 

regarding the regulation of cdk5 in different experimental models of neuronal death 

have revealed a frequent occurrence of calpain-mediated cleavage of cdk5 activators. 

This is consistent with the common involvement of elevated intracellular calcium levels 

in neuronal death. Calpain-mediated cleavage of p35 or p39 has been reported in 

neuronal cell cultures exposed to calcium ionophores, maitotoxin, glutamic acid, β-

amyloid, H2O2, colchicine, or staurosporine (Kusakawa et al. 2000, Lee et al. 2000, 

Nath et al. 2000, Patzke and Tsai 2002, Canudas et al. 2004). In vivo cleavage of p35 

has been detected in malonate-injured rat brains (Nath et al. 2000). Also the protein 

levels of cdk5 and p35 are altered during the process of neuronal cell death. However, 

there is evidence for both elevated (Canudas et al. 2004, Zhang et al. 2004a) and 

reduced (Shirvan et al. 1998, Vartiainen et al. 2002) cdk5 and p35 levels in neuronal 

cultures subjected to toxic conditions. In vivo accumulation of cdk5 and p35 has been 

observed in cell bodies and nuclei during the late stages of apoptotic neuronal death 

(Henchcliffe and Burke 1997, Zhang et al. 1997, Neystat et al. 2001), although this 

might be partially explained by an altered localization of these proteins. 

 

Changes in the regulation of cdk5 take place in several human neuropathological 

conditions, and in experimental models mimicking these disorders. Currently, there are 

no reports investigating cdk5 in human cases affected by ischemic stroke. However, in 

rat brains, elevated cytoplasmic and nuclear immunoreactivities for p35 and cdk5 are 

detected transiently 1 – 3 h after occlusion of the middle cerebral artery  (Hayashi et al. 

1999). Ischemia also causes calpain-mediated cleavage of both p35 and p39 in 

experimental animals (Lee et al. 2000, Nath et al. 2000, Patzke and Tsai 2002).  

 

In AD there is accumulation of cdk5 in neurons harboring NFTs (Yamaguchi et al. 

1996). However, the highest cdk5 levels are detected in neurons displaying lower 
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immunoreactivity for phosphorylated tau and no staining for ubiquitin, which suggests 

preferential expression of cdk5 in neurons with early neurofibrillary degeneration (Pei 

et al. 1998). In transgenic mice mimicking the amyloid pathology of AD, the 

accumulation of cdk5 is a rare event and confined to dystrophic neurites (Tomidokoro et 

al. 2001). Detection of calpain-mediated cleavage of cdk5 activators in human brain 

tissue is markedly hampered by the extensive proteolysis of these proteins during the 

postmortem period (Taniguchi et al. 2001). Thus, it is not surprising that there are 

highly conflicting results on the p25 protein levels in brains of patients with AD 

(Patrick et al. 1999, Takashima et al. 2001, Taniguchi et al. 2001, Yoo and Lubec 2001, 

Tseng et al. 2002, Tandon et al. 2003). However, in AD there is increased 

immunolabeling of NFT-containing neurons with an antibody recognizing the C-

terminus of p35. As immunoreactivity for the N-terminus of p35 is not elevated in 

NFTs, this suggests that it represents the accumulation of the p25 proportion of p35 

(Patrick et al. 1999). In transgenic mice mimicking the amyloid pathology of AD, both 

increased and unaltered levels of p25 have been reported (Otth et al. 2002, Tandon et al. 

2003).  

 

Cdk5 expression is also increased in the motor neurons of patients with ALS. Some, but 

not all, neurons containing accumulated NFs characteristic for ALS also display 

augmented cdk5 immunoreactivity (Nakamura et al. 1997b, Bajaj et al. 1998). 

Additionally, the ALS-mimicking pathology in mice overexpressing mutated 

superoxide dismutase 1 (SOD1) is associated with accumulation of cdk5 in the spinal 

motor neurons. Also increased cleavage of p35 to p25, and elevated cdk5 activity is 

detected in the spinal cord of these animals (Nguyen et al. 2001). Furthermore, cdk5 and 

p35 are found in Lewy bodies of PD and diffuse Lewy body disease (Brion and Couck 

1995, Nakamura et al. 1997a). In mice treated with 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) to mimic the pathological alterations of PD, the expression 

of cdk5 is increased in the dopaminergic neurons of the substantia nigra, and also 

elevated cdk5 activity and calpain-mediated cleavage of p35 are detected (Smith et al. 

2003). Additionally, calpain-mediated cleavage of p35 has been reported in rats with 

experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis 

(Schneider et al. 2004). 
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In summary, altered protein expression of p35-cdk5 and/or calpain-mediated cleavage 

of cdk5 activator proteins frequently co-occurs with neuronal death and protein 

accumulation. However, based on these findings alone, it cannot be concluded whether 

the changes in cdk5 contribute to or are a consequence of these processes. 

 

The role of cdk5 in neuronal death.  Several pieces of evidence do suggest that the 

changes in the function of cdk5 in stressful conditions promote the process of neuronal 

cell death. In neuronal cultures, cdk5 inhibitors reduce cell death induced by a wide 

range of neurotoxic insults, such as exposure to β-amyloid, colchicine, the glutathione 

synthase inhibitor buthionine sulfoxamine, or staurosporine, as well as by withdrawal of 

potassium and serum, or lack of neurotrophic factors (Alvarez et al. 1999, Lee et al. 

2000, Jorda et al. 2003, Weishaupt et al. 2003). Also, more specific inhibition of cdk5 

by an antisense oligonucleotide approach, or by overexpression of a polypeptide 

inhibitor of cdk5 (cdk5 inhibitory peptide, CIP), reduces β-amyloid-induced 

upregulation of apoptotic markers and neuronal death (Alvarez et al. 1999, Zheng et al. 

2005). Moreover, overexpression of a dominant-negative mutant form of cdk5 decreases 

glutamate-induced apoptotic changes (Gong et al. 2003). In an experimental model of 

ischemia, cdk5 has been shown to aggravate neuronal cell loss, as inhibition of cdk5 by 

virus-mediated overexpression of dominant-negative cdk5 significantly reduces 

ischemia-induced neuronal death in the hippocampus (Wang et al. 2003). There is also 

evidence suggesting that inhibition of cdk5 can reduce neuronal degeneration in 

experimental animal models of neurodegenerative disorders. Expression of dominant-

negative cdk5 reduces MPTP-induced loss of dopaminergic neurons (Smith et al. 2003). 

Furthermore, cdk5 inhibitors reduce NF and tau phosphorylation as well as loss of 

Purkinje neurons in an animal model of Niemann-Pick type C disease (Zhang et al. 

2004b), a neurodegenerative lysosomal storage disorder. The pathology in these animals 

involves activation of cdk5 (Bu et al. 2002).  

 

Pronounced calpain-mediated cleavage of cdk5 activator proteins has been commonly 

suggested to deregulate cdk5, as calpain evokes increased and prolonged cdk5 activity, 

and releases the active enzyme to the cytosol. Indeed, overexpression of p25 in a 
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neuronal cell line has induced cell death (Hamdane et al. 2003), whereas in neuronal 

cultures, p25 overexpression results in a greater number of condensed nuclei when 

compared to p35 overexpression (Patrick et al. 1999). However, it should not be 

overlooked, that cdk5 can promote neuronal death in vitro also independently of 

calpain-mediated cleavage of cdk5 activators (Weishaupt et al. 2003). 

 

Several downstream mechanisms have been proposed to mediate the neuronal death-

promoting effects of cdk5. Cdk5 might augment neuronal loss by modulating signaling 

systems ubiquitously associated with cell death. Neuronal characteristics do not seem to 

be required for cdk5-mediated cell death, as overexpression of cdk5 and p25 promotes 

apoptotic events in a non-neuronal cell line (Patrick et al. 1999). Indeed, cdk5 has been 

shown to phosphorylate p53, a transcription factor regulating cell cycle progression and 

apoptosis, leading to increased p53 levels and to stimulation of p53-responsive genes, 

such as Bax (Zhang et al. 2002). Cdk5 also downregulates signaling related to 

extracellular signal-regulated kinases 1 and 2 (ERK1/2), which  could promote cell 

death, as activation of ERK1/2 has been suggested to trigger defense responses 

following neuronal injury (Hetman and Gozdz 2004). Cdk5 phosphorylates and thereby 

inhibits the mitogen-activated protein kinase kinase 1 (MEK1), which reduces the 

phosphorylation and the activity of its target ERK1/2 (Sharma et al. 2002). 

Additionally, cdk5 phosphorylates the Ras guanine nucleotide releasing factor 2 

(RasGRF2), which results in decreased Rac activity, and subsequently reduced ERK1/2 

activity through a still uncharacterized mechanism (Kesavapany et al. 2004). Moreover, 

cdk5 phosphorylates and inhibits the activity of the prosurvival transcription factor 

MEF2 (myocyte enhancer factor 2) (Gong et al. 2003). Overexpression of MEF2 which 

is resistant to cdk5-mediated phosphorylation, reduces neuronal cell death induced by 

cdk5-p25 overexpression, H2O2, or glutamate. Some of the effects of cdk5 on cell death 

are mediated by factors that are unique to neuronal cells. In ischemia, there is AMPA 

receptor-evoked activation of cdk5, and subsequent cdk5-mediated phosphorylation of 

the NMDA receptors, which augments NMDA currents and neuronal loss (Wang et al. 

2003). This finding implicates cdk5 in the basic mechanisms of glutamate 

excitotoxicity. The fact that cdk5-specific inhibitors block mitochondrial dysfunction 
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induced by toxic treatments suggests that cdk5 affects relatively early events of cell 

death (Weishaupt et al. 2003). 

 

When regarding the chronic neurodegenerative disorders, cdk5 activation has been 

suggested to affect neuronal degeneration in particular by promoting cytoskeletal 

dysfunction and/or abnormal accumulation of cytoskeletal proteins. The cdk5-induced 

phosphorylation of tau has been frequently proposed to have pathological consequences. 

However, the cdk5-mediated phosphorylation of NFs has been hypothesized even to be 

beneficial by preventing more hazardous cdk5-involving phosphorylation events 

(Nguyen et al. 2001). As mentioned earlier, cdk5 and p35 are found in various 

pathology-associated neuronal inclusions containing abnormally hyperphosphorylated 

tau or NF proteins. Also calpain-mediated cleavage of cdk5 activator proteins has been 

proposed to occur in some neurodegenerative disorders, although detection of this 

phenomenon in human brain material is hampered by postmortem changes. Moreover, 

cdk5 is able to phosphorylate both tau and NF proteins (Ishiguro et al. 1992, Baumann 

et al. 1993, Sun et al. 1996, Sharma et al. 1999a, Lund et al. 2001). In particular, 

calpain-mediated cleavage of p35 has been claimed to affect the potential of cdk5 to 

promote hyperphosphorylation of tau. In vitro and in transfected cell cultures, p25 

appears to be more potent than p35 in promoting cdk5-induced tau phosphorylation 

(Patrick et al. 1999, Hashiguchi et al. 2002). Transgenic mice overexpressing p25 have 

shown alterations in the phosphorylation of tau and NF proteins, although the extent of 

these changes varies significantly (Ahlijanian et al. 2000, Takashima et al. 2001, Bian et 

al. 2002). The most prominent neuropathological effects have been observed in mice 

having postnatally induced overexpression of p25. These animals display neuronal loss, 

increased phosphorylation of NF and tau proteins as well as accumulation of insoluble 

and filamentous tau in association with NFT-like pathology (Cruz et al. 2003). Further, 

introduction of p25 significantly enhances the NFT-like pathology in mice 

overexpressing mutated human tau (Noble et al. 2003). Overexpression of p35 in mice 

results in redistribution of NF proteins, whereas no tau-involving changes are detected 

(Van den Haute et al. 2001). However, no actual comparison of the effects of p25 and 

p35 in transgenic mice has been reported. There is also some evidence suggesting that 

cdk5 might modulate the metabolism related to the formation of extracellular amyloid 
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deposits in AD as well. Cdk5 has been reported to phosphorylate APP (Iijima et al. 

2000) and to modify its proteolytic processing (Liu et al. 2003, Ryder et al. 2003, Taru 

et al. 2004), whereas cdk5-mediated phosphorylation of the C-terminal fragment of 

presenilin-1 increases the stability of the protein (Lau et al. 2002).  

 

The neuroprotective role of cdk5.  Some evidence indicates that activation of cdk5 

modulates neuronal signal transduction in a manner that promotes survival. Cdk5 has 

been observed to negatively regulate the c-Jun N-terminal kinase 3 (JNK3), which is a 

mitogen-activated protein kinase (MAPK) believed to promote neuronal cell death e.g. 

in the context of excitotoxicity (Yang et al. 1997). Cdk5 phosphorylates JNK3, leading 

to reduced JNK3 activity and c-Jun phosphorylation in response to ultraviolet 

irradiation (Li et al. 2002). In neuronal cultures prepared from mice lacking cdk5 there 

is elevated JNK3 activity in association with increased sensitivity to apoptosis. 

Moreover, the cdk5 inhibitor roscovitine can prevent the Akt kinase activating and 

neuronal survival promoting effects of neuregulins, a class of epidermal growth factor-

like molecules (Li et al. 2003). Indeed, cdk5 directly phosphorylates the ErbB2 and 

ErbB3 neuregulin receptors. The proposed cdk5-involving mechanisms regulating 

neuronal death and survival are summarized in figure 2. 
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Figure 2. Summary of the proposed cdk5-involving mechanisms regulating neuronal 
death and survival. The figure shows the putative inducers of cdk5 alterations, 
immediate molecular targets of cdk5, the proposed downstream effects, and the final 
outcome. 
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3. AIMS OF THE STUDY 

 

Previous studies have established the crucial role of cdk5 in the regulation of pivotal 

neurobiological events, and implicated deregulation of cdk5 in several 

neuropathological conditions. Detailed knowledge on the regulation of cdk5 will 

promote understanding of basic neurobiology, and strengthen the foundation of studies 

aiming at therapeutic interventions for neurological disorders. Neuronal loss is an 

important feature of several pathological conditions highlighting the need for research 

on the mechanisms of death of these largely irreplaceable cells. The aim of the present 

study was to investigate the regulation of cdk5, especially during the course of neuronal 

cell death, and also to evaluate the possible association between cdk5 and 

phosphorylation of the microtubule-associated protein tau. 

 

The specific aims of the study were:  

 

Study I: To explore how the expression of cdk5 and p35 proteins, as well as cdk5 

activity and tau phosphorylation, are regulated during apoptotic neuronal 

death. 

 

Study II: To investigate how calpain-mediated cleavage of p35 to p25 and 

phosphorylation of tau protein are affected during neuronal cell death 

induced by intracellular calcium concentration-elevating treatments. 

 

Study III: To elucidate the contribution of different ionotropic glutamate receptors on 

the calpain-mediated cleavage of p35 in cultured neurons. 

 

Study IV: To study how p35 phosphorylation can affect the proteolysis of the 

protein. 
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4. MATERIALS AND METHODS 

 

4.1. Hippocampal neuronal cultures 

 

Primary cultures of hippocampal neurons were isolated from 17-days-old Wistar rat 

embryos, and cultured essentially as previously described (Brewer et al. 1993). Pregnant 

rats were anesthetized with CO2 and decapitated. The fetuses were removed and the 

hippocampi were dissected. The hippocampi were incubated for 10 min at +37 °C in 

phosphate-buffered saline (PBS) containing 10 mM glucose and 1 mg/ml bovine serum 

albumin (BSA), which had been supplemented with papain (0.5 mg/ml), DNase I (10 

µg/ml), and MgSO4 (2.4 mM). Thereafter the solution was replaced with PBS-glucose-

BSA supplemented with DNase I (40 µg/ml) and MgSO4, and then the hippocampi were 

triturated, and the suspension was allowed to settle for a few minutes. The supernatant 

was collected, and the trituration was repeated with a fresh solution. The supernatants 

were combined and centrifuged for 5 min at 150 g. The pellet was suspended in 

Neurobasal medium (Gibco) supplemented with 0.5 mM glutamine, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 5 % inactivated fetal bovine serum (FBS, 

HyClone). The cells were plated onto poly-D-lysine coated cell culture dishes at a 

density of 60000 cells/ cm2, and maintained at +37 °C in a cell culture incubator in an 

atmosphere of 5 % CO2. On the next day, the medium was replaced with fresh medium 

containing B27 supplement (Gibco) and lacking FBS. When the cells were planned to 

be cultured for 13 days before subjecting to experiments, half of the medium was 

replaced after 8 days of culture.  

 

4.2. Cell culture models of neuronal death 

 

Apoptosis was induced in hippocampal neurons by subjecting the cells to different 

apoptosis-inducing chemicals after 7 – 9 days in culture. The chemicals used included 

the protein phosphatase 1 and 2A inhibitor okadaic acid (10 nM, Calbiochem), the 

topoisomerase II inhibitor etoposide (5 µM, Calbiochem), the calcineurin inhibitor 
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cyclosporin A (10 µM, Calbiochem), and the lipid peroxidation product 4-

hydroxynonenal (HNE, 20 µM, Calbiochem). The incubation times ranged from 6 to 24 

hours. 

 

Treatments of hippocampal neurons with glutamate agonists were performed after 13 

days in culture, as in younger cultures the NMDA receptors are believed to be immature 

(Peterson et al. 1989, Cheng et al. 1999). In study III, also 6-day-old cultures were 

employed to evaluate the alterations in glutamate responses taking place during the 

maturation of neurons in culture. In study III, the glutamate agonists were added 15 min 

after the culture medium had been replaced, whereas in studies II and IV the agonists 

were added into the conditioned medium present on the culture dishes. The glutamate 

agonists used were glutamic acid (40 – 2000 µM, Sigma), NMDA (20 – 2000 µM, 

Sigma), kainic acid (5 – 1000 µM, Sigma), AMPA (100 – 1000 µM, Sigma), and 3,5-

dihydroxyphenylglycine (DHPG, 100 – 1000 µM, Tocris). Exposure times were 30 min 

– 8 h in study II, 30 min in study III, and 60 min in study IV. The experiments with 

calcium ionophores were performed with hippocampal neurons cultured for 13 days, 

and the incubation times were between 40 and 45 minutes. The ionophores included 

ionomycin (1 – 16 µM, Calbiochem) and A23187 (1 – 20 µM, Calbiochem). The 

culture medium was supplemented with 2.5 mM CaCl2 when the incubations with 

glutamate agonists or calcium ionophores were initiated, unless otherwise indicated. 

 

In some experiments, the cultures were preincubated for 10 – 30 min with glutamate 

antagonists or different inhibitors. The glutamate antagonists used were the NMDA 

antagonist MK-801 (10 µM, Tocris), and the non-NMDA antagonists 2,3-dioxo-6-nitro-

1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX, 100 µM, Sigma) and 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX, 100 µM, Sigma). The inhibitors employed 

were the calpain inhibitor MDL28170 (100 µM, Calbiochem), the L-type VSCC blocker 

nifedipine (200 µM, Sigma), the AMPA receptor desensitization inhibitor cyclothiazide 

(CTZ, 150 µM, Tocris), the kainate receptor desensitization inhibitor concanavalin A 

(Con A, 750 µg/ml, Sigma), the cdk5 inhibitor roscovitine (20 – 40 µM, Calbiochem), 

and the proteasome inhibitor lactacystin (5 µM, Calbiochem).  
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The key findings of the study were observed in at least two separate experiments. The 

reported protein and cell death analyzes were performed on the same dish of cells. 

 

4.3. Preparation and manipulation of protein samples 

 

4.3.1. Preparation of protein samples 

 

The cell cultures were washed with PBS and scraped in protein lysis buffer containing 

20 mM MOPS (3-[N-morpholino]propanesulfonic acid) (pH 7.2), 1 mM MgCl2, 0.3 M 

NaCl, and 0.5 % Nonidet P-40, supplemented with Complete protease inhibitor cocktail 

(Roche). In studies III and IV, and in study II (when indicated) protein phosphatase 

inhibitors (50 mM NaF, 100 µM Na-orthovanadate, 5 mM Na-pyrophosphate, 5 mM 

EDTA) were added into the lysis buffer. The lysates were centrifuged at 13,000g for 20 

minutes (+4 °C), and the supernatants were collected. The protein content of the 

samples was measured employing a DC Protein Assay kit (Bio Rad). When protein 

samples were  isolated from rat brain tissue, the 1-day-old Wistar rat pups were 

sacrificed by decapitation, and the brain tissue (cerebral or cerebellar cortices) was 

homogenized in the protein lysis buffer, and processed as the cell culture samples 

described above.  

 

4.3.2. Phosphatase treatment of protein samples 

 

The protein samples were diluted 6 – 14 fold in the protein lysis buffer lacking protein 

phosphatase inhibitors. In study IV, 5 mM Na-orthovanadate was added into the diluted 

samples to prevent dephosphorylation of p35 occurring efficiently due to endogenous 

phosphatases. The samples were incubated for 1 h at 30 °C with 200-400 U of λ-protein 

phosphatase (λ-PPase, New England BioLabs) in 1× phosphatase buffer containing 50 

mM Tris (pH 7.5), 0.1 mM EDTA, 5 mM dithiotreitol, and 0.01 % Brij 35, 

supplemented with 2 mM MnCl2. A control reaction was carried out in the absence of λ-
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PPase. The reaction was terminated by addition of electrophoresis sample buffer 

followed by heating of the samples for 5 min at 95 °C. 

 

4.3.3. ATP treatment of protein samples 

 

Incubation of protein samples with ATP was performed to study the phosphorylation of 

the p35 protein by endogenous kinases in vitro. Rat cortical homogenate was prepared 

in the protein lysis buffer in the absence of phosphatase inhibitors. The homogenate was 

incubated for 20 min – 3 h at 30 °C with 4 mM MgCl2 in the presence or absence of 200 

µM – 1 mM ATP. In some cases 50 mM NaF and 100 µM Na-orthovanadate were 

included into the incubation. The samples were analyzed by immunoblotting with an 

anti-p35 antibody, as will be described later. 

 

4.3.4. Calpain treatment of brain homogenate 

 

Rat cortical brain homogenate was prepared in the protein lysis buffer in the absence of 

phosphatase and protease inhibitors. The effect of protein phosphorylation on calpain-

mediated p35 cleavage was studied by subjecting the brain homogenate first to an ATP 

treatment, followed by incubation for 20 min at 37 °C with 5 mM CaCl2 in the presence 

or absence of purified calpain II (0.5 U, Calbiochem). The reaction was terminated by 

addition of electrophoresis sample buffer followed by heating of the samples for 5 min 

at 95 °C. 

 

4.4. Analysis of cdk5, p35, and tau proteins by immunoblotting 

 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer 

was added onto equal amounts of protein samples (10-40 µg), and the samples were 

heated for 5 min at 95 °C. The proteins were resolved using 6 – 12 % sodium dodecyl 

sulfate-polyacrylamide gels (SDS-PAGE), and blotted onto Hybond ECL nitrocellulose 

membranes (Amersham). Transfer efficiency and equal loading of the samples was 
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confirmed by staining of the blots with Ponceau S (Sigma). The membranes were 

blocked for 1 h in PBS containing 1 % BSA, 0.2 % non-fat dried milk, and 0.05 % 

Tween-20. Thereafter the blots were subjected for 1 h to primary antibodies diluted in 

the blocking buffer. Primary antibodies were used at the following dilutions: p35 (Santa 

Cruz, C-19), 1:500-1:1000; cdk5 (Santa Cruz, C-8), 1:1000; tau-5 (BioSource, against 

phosphorylation-independent epitope of tau), 1:12000; AT8 (Innogenetics, epitope 

around phosphorylated residue 202 of human tau), 1:2000-1:3000; AT180 

(Innogenetics, tau phosphorylated at residue 231), 1:2000; AT270 (Innogenetics, tau 

phosphorylated at residue 181), 1:12000; pT212 (BioSource, tau phosphorylated at 

residue 212), 1:8000; pS404 (BioSource, tau phosphorylated at residue 404), 1:8000. 

The membranes were washed three times for 5 min in PBS containing 0.05 % Tween-

20, and thereafter incubated for 1 h with peroxidase-conjugated anti-rabbit (Amersham, 

1:2000-1:4000), or anti-mouse (Amersham, 1:2000-1:4000) antibodies diluted in the 

blocking buffer. The membranes were washed as above, and the bound antibodies were 

visualized by enhanced chemiluminescence reaction (Pierce) and film detection 

(Hyperfilm ECL, Amersham). 

 

4.5. Cdk5 activity assay 

 

Cdk5 kinase activity was measured essentially as previously described (Saito et al. 

1998). Fifty µg of protein in 100 µl of protein lysis buffer was incubated with 3 µl of 

anti-cdk5 antibody (Santa Cruz, C-8) for 4 h at +4°C with constant mixing. Twenty µl 

of protein A-Sepharose suspension (Amersham) was added, and the incubation was 

continued overnight. The Sepharose was collected by centrifugation (30 sec, 13000 g), 

and washed twice with washing buffer containing 10 mM MOPS (pH 7.2), 1 mM 

MgCl2, 1 mM EGTA, 5 mM EDTA, 50 mM NaF, 100 M Na-orthovanadate, and 5 mM 

Na-pyrophosphate, and once with assay buffer containing 10 mM MOPS (pH 7.2), and 

1 mM MgCl2. A kinase reaction was carried out by adding 50 µl of assay buffer with 

0.1 mM ATP, 0.4 mg/ml histone H1, and 0.1 mCi/ml [γ-32P]ATP onto the Sepharose, 

and incubating the samples for 30 min at 30 °C. The reaction was terminated by 

addition of electrophoresis sample buffer followed by heating of the samples for 5 

minutes at 95 °C. The proteins were separated employing a 12 % SDS-PAGE gel, and 
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the gel was dried. Radioactivity on the gel was detected by a Storm PhosphorImager 

(Molecular Dynamics), and the pixel volumes of the radioactive histone H1 bands were 

quantified with ImageQuaNT software (Molecular Dynamics).  

 

4.6. Characterization of cell death 

 

4.6.1. Analysis of cell morphology 

 

The cellular morphology was evaluated to obtain an overall impression of the extent of 

neuronal damage. Photographs were taken with a camera attached to an inverted 

microscope immediately prior to collection of protein samples. In study II the 

morphological changes associated with neuronal damage were graded as described in 

figure 3. 
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Figure 3. Grading of neuronal damage by morphological analysis. The morphology of 
neuritic network was graded to be either unchanged (“-“ = no changes whatsoever 
detectable when compared to an untreated control culture), or to have minor changes 
(“+” = local swellings of neurites clearly detectable), moderate damage (“++” = the 
neurites clearly fragmented), or extensive damage (“+++” = even the thickest processes 
fragmented). 
 

4.6.2. Assessment of LDH release 

 

A sample of the cell culture medium was collected to analyze the release of lactate 

dehydrogenase (LDH) to the culture medium upon cell lysis. The medium sample was 

clarified by centrifugation (13000 g, 30 sec), and LDH activity was analyzed with the 

CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega) according to the 
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manufacturer’s instructions. The percentage of cell death was calculated by designating 

LDH release in an untreated control culture as zero percent cell death, and LDH release 

in a detergent lysed culture as 100 percent cell death. 

 

4.6.3. Measurement of cellular ATP levels 

 

The neuronal cultures were washed with PBS, and the cells were lysed in Somatic Cell 

ATP Releasing Reagent (Sigma). The ATP levels in the samples were measured using 

an enzymatic luciferase-based Bioluminescent Somatic Cell Assay kit (Sigma) 

according to the manufacturer’s instructions. 

 

4.6.4. Caspase-3 activity assay 

 

Caspase-3 activity was examined by measuring the amount of a fluorescent product 

released from a synthetic substrate of caspase-3, essentially as suggested by the 

manufacturer of the substrate. In brief, 255 µl of a solution containing 20 mM N-2-

hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES) (pH 7.5), 10 % glycerol, 2 

mM dithiothreitol, and 20 µM Ac-DEVD-AMC (Pharmingen) was added onto 25 µg of 

a protein sample (in 25 µl volume) in the wells of a black 96-well microtiter plate. The 

plate was mixed, and after 60 min in +37 °C, the fluorescence was measured with a 

Victor 1420 Multilabel Counter (Wallac) using 355 nm excitation and 460 nm emission 

wavelengths. 

 

4.6.5. Analysis of αII-spectrin breakdown products 

 

Analysis of the breakdown products of αII-spectrin was used to detect calpain-protease 

activity. αII-Spectrin was analyzed from cell lysates by immunoblotting as described 

above. The αII-spectrin primary antibody (Santa Cruz, C-20) was diluted 1:100, and the 

peroxidase-conjugated anti-goat antibody (Boehringer-Mannheim) was diluted 1:2000. 

Calpain cleaves αII-spectrin from two different sites leading to C-terminal fragments 
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with molecular weights of 145 kDa and 150 kDa. It should be noted that also caspase-3 

can generate a cleavage product with a molecular weight of 150 kDa (Wang 2000). 
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5. RESULTS 

 

5.1. Cdk5 and p35 proteins as well as cdk5 activity and tau phosphorylation are 

downregulated during neuronal apoptosis (I) 

 

Apoptotic cell death was induced in rat hippocampal neuronal cultures by subjecting the 

cells to different apoptosis-inducing compounds. Neuronal damage was evaluated 

microscopically, and activation of the apoptotic cascade was assessed by measuring the 

activity of caspase-3, a central effector caspase. Activity of calpain, a protease activated 

in various necrotic and apoptotic conditions, was detected by examining the level of 

calpain-generated cleavage products of endogenous αII-spectrin. 

 

Okadaic acid induced morphologically visible neuritic damage after 6 hours of 

treatment, whereas the first signs of damaged neuritic network were seen after 12 h in 

neurons treated with etoposide, cyclosporin A, and HNE. All the compounds induced 

caspase-3 activation, ranging from 6 to 20-fold greater activity when compared to an 

untreated control culture (Fig. 1, study I). The level of the 145 kDa calpain-type 

cleavage product of αII-spectrin was low and only detected in cells subjected to 

cyclosporin A or okadaic acid treatment. 

 

The level of p35 protein was reduced with okadaic acid and HNE after 6 h, and with 

etoposide and cyclosporin A after 12 h of treatment (Fig. 2, study I). The p25 levels 

were also reduced early during the course of apoptosis. However, the levels of cdk5 

protein remained relatively constant until becoming reduced at 24 h. HNE provided an 

exception by inducing an early decrease in the cdk5 level. Cdk5 activity was generally 

reduced during the course of cell death. However, the correlation of cdk5 activity with 

p35, p25, and cdk5 protein levels was not obvious in all conditions. We also monitored 

the phosphorylation of tau protein, a substrate of cdk5, during the course of cell death. 

Immunoblotting with the AT8 antibody was used as the phosphorylation-dependent 

epitope of this antibody has been suggested to be especially relevant with respect to 

cdk5-mediated phosphorylation (Patrick et al. 1999, Hashiguchi et al. 2002, Hamdane et 
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al. 2003). Tau phosphorylation was generally slightly reduced during the early phase of 

neuronal death (6 – 12 h), but later phosphorylation was partially restored. Okadaic acid 

induced a substantial increase in tau phosphorylation, probably because tau is a 

substrate of the protein phosphatases inhibited by okadaic acid. An additional tau band 

(47 kDa) was detected in okadaic acid and etoposide treated cells. When a longer 

exposure time of the blot was used, the additional band was observed also in cultures 

subjected to cyclosporin A or HNE (data not shown). The appearance of this band 

peaked at the time of caspase-3 activation. Indeed, the 47 kDa tau isoform may 

represent a caspase cleavage product, as tau is known to be a substrate for caspases 

(Canu et al. 1998, Ko et al. 2000, Krishnamurthy et al. 2000). 

 

5.2. Calpain-mediated cleavage of p35 to p25 during neuronal cell death is not 

associated with tau hyperphosphorylation (II) 

 

Rat hippocampal neuronal cultures were subjected to toxic treatments known to increase 

the concentration of intracellular calcium. The relationship between the calpain-

mediated cleavage of p35, cdk5 activity, and tau phosphorylation was studied during the 

course of cell death. Glutamate induced a prominent cleavage of p35 to p25 already 

after 30 min of treatment, whereas the protein level of cdk5 remained relatively constant 

for 4 h (Fig. 1A, study II). Cdk5 activity was elevated in association with the increased 

p25 levels after a short (30 min – 2 h) glutamate exposure, whereas no increase in cdk5 

activity was detectable after longer incubations (4 – 8 h). As activation of cdk5 has been 

suggested to induce hyperphosphorylation of tau, we also evaluated the relationship 

between cdk5 activity and tau phosphorylation in glutamate treated cells. 

Immunoblotting with a phosphorylation-independent tau antibody (Tau-5) revealed a 

transient appearance of two fast-migrating tau bands. These bands likely represent 

dephosphorylated forms of tau, as similar isoforms were generated when a protein 

sample from cultured neurons was exposed to λ-protein phosphatase (Fig. 1B, study II). 

In agreement with these findings, tau phosphorylation was found to be reduced to a 

varying extent in glutamate treated neurons with five different phosphorylation-

dependent tau antibodies recognizing epitopes phosphorylatable by cdk5 (Fig. 1A, study 

II). The calpain inhibitor MDL28170 prevented the glutamate-induced cleavage of p35 
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to p25, as well as the cleavage of αII-spectrin, another calpain substrate (Fig. 1C, study 

II). However tau phosphorylation remained unaffected suggesting that calpain-mediated 

processes, such as cleavage of p35 to p25, do not contribute to tau phosphorylation in 

these conditions. In general, the first evidence for altered p25 production, cdk5 activity, 

or tau phosphorylation was observed before significant alterations in neurite 

morphology or loss of membrane integrity (LDH release) in glutamate treated cultures 

(Fig. 1A, study II). However, cellular ATP levels displayed a 20 % and 45 % decrease 

in cultures incubated for one hour with 40 µM and 200 µM glutamate, respectively, 

indicating an early disturbance of the energy metabolism.  

 

NMDA, an agonist of the NMDA class of glutamate receptors, also resulted in rapid (30 

min) cleavage of p35 to p25, and decreased tau phosphorylation (Fig. 2, study II). These 

changes also appeared well before any significant changes in neuritic morphology or 

LDH release were apparent (Fig. 2, study II), whereas the amounts of cellular ATP were 

decreased by 19 % and 25 % with 80 and 400 µM NMDA, respectively, when 

compared to an untreated culture after 1 h of incubation. 

 

Cleavage of p35 to p25 was also observed in cultured neurons treated with the calcium 

ionophores ionomycin or A23187 (Fig. 3A and 3C, study II). Decreased tau 

phosphorylation was also detected in these conditions (Fig. 3A and 3D, study II). Again, 

in the cultures treated with the calcium ionophores, the cellular ATP levels were 

decreased (Fig. 3B and 3E, study II). In contrast to glutamate and NMDA treatments, 

the calcium ionophores affected the p25 level and tau phosphorylation only under 

conditions where morphological evidence of cellular damage was apparent (Fig. 3A and 

3D, study II).  

 

5.3. Both NMDA and non-NMDA receptors are able to mediate glutamate-induced 

cleavage of p35 to p25 in cultured neurons (III) 

 

The role of different calcium-permeable ionotropic glutamate receptors in the induction 

of calpain-mediated p35 cleavage was elucidated during the early phase of glutamate 

excitotoxicity in cultured rat hippocampal neurons. A 30-minute treatment of the 
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cultures with glutamate and NMDA, as well as with the non-NMDA receptor agonists 

kainic acid and AMPA, induced prominent cleavage of p35 to p25 (Fig. 1A, study III). 

The term “non-NMDA receptors” is commonly used collectively to refer to the kainate 

and AMPA receptors, as the receptors have significant structural similarity and 

overlapping pharmacological properties. The cleavage of p35 was prevented when the 

cultures were subjected to the glutamate agonists in the presence of the cell-

impermeable calcium chelator ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-

tetraacetic acid (EGTA) (Fig. 2A, study III). This suggests that the p35 cleavage-

inducing calcium mainly originates from the extracellular pool, which is further 

supported by the increased p35 cleavage in the presence of elevated extracellular 

calcium level. Moreover, DHPG, an agonist of the metabotropic group I glutamate 

receptors, did not promote p35 cleavage (Fig. 1B, study III), although these receptors 

have been linked to calcium release from intracellular sources (Sugiyama et al. 1987). 

 

Neuronal responses to glutamate are known to undergo significant changes during 

maturation of neurons in culture (Cheng et al. 1999). Although glutamate, NMDA, and 

kainic acid were all able to induce p35 cleavage to p25 in the 13-day-old hippocampal 

neuronal cultures used above, in the more immature 6-day-old cultures, the effect of 

glutamate was barely detectable, and NMDA had no effect (Fig. 1C, study III). 

Nevertheless, kainic acid caused cleavage of p35 also in these immature cultures. 

 

When studying the contribution of different classes of glutamate receptors on the p35 

cleavage induced by glutamate, it was observed that MK-801, an antagonist of the 

NMDA receptor, prevented the p35 cleavage to p25 in glutamate-treated neurons (Fig. 

2B, study III). However, the non-NMDA antagonists NBQX and CNQX did not block 

the glutamate-induced p35 cleavage. This suggests that the NMDA receptors are the 

predominant mediator of glutamate-induced p35 cleavage under normal culture 

conditions. As expected, the effect of NMDA was blocked by MK-801, whereas the 

action of kainic acid was prevented completely by NBQX and partially by CNQX. Also 

nifedipine, a blocker of the L-type voltage-sensitive calcium channels, partially 

prevented the effect of all of the glutamate agonists studied. 
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Inhibitors of AMPA and kainate receptor desensitization are the most selective 

pharmacological tools available to make a distinction between these non-NMDA 

receptors. When the NMDA receptors in the neuronal cultures were blocked by MK-

801, glutamate alone was inefficient, but with CTZ, a selective inhibitor of AMPA 

receptor desensitization, glutamate induced p35 cleavage to p25 (Fig. 3A, study III). 

This suggests that desensitization of AMPA receptors may prevent glutamate from 

inducing p35 cleavage via AMPA receptor activation in these cultures. Concanavalin A 

(Con A), an inhibitor of kainate receptor desensitization, had a barely detectable effect. 

When a low concentration of the non-NMDA receptor agonist kainic acid was applied 

together with CTZ or Con A, both desensitization inhibitors promoted p35 cleavage 

(Fig. 3B, study III). This implies that the effect of kainic acid on p35 cleavage may be 

mediated through both AMPA and kainate receptors. Also in the absence of agonists, 

CTZ was able to induce p35 cleavage (Fig. 3A and 3B, study III), possibly indicating 

AMPA receptor activation by glutamate constantly released from the cultured neurons. 

Accordingly, previous studies have shown that endogenous glutamate is able to induce 

non-NMDA receptor activity, a property which is strongly enhanced by CTZ (Vignes 

2001). 

 

5.4. Phosphorylation of p35 affects its proteasomal degradation and calpain-

mediated cleavage to p25 (IV) 

 

Protein samples prepared in the absence of phosphatase inhibitors from newborn rat 

cortical or cerebellar tissue, or from cultures of rat hippocampal neurons, contained p35 

protein migrating as a single band in immunoblot (Fig. 1A, study IV). However, when 

protein samples were extracted in the presence of phosphatase inhibitors, p35 displayed 

a mobility shift on SDS-PAGE, leading to a doublet (or triplet) band in the immunoblot. 

This doublet band was converted to a single band when cortical brain lysate was 

incubated with λ-protein phosphatase (Fig. 1B, study IV). Also, incubation of brain 

lysate with ATP resulted in slower electrophoretic migration of p35 (Fig. 1C, study IV). 

These results indicate that the upper band of the p35 doublet represents p35 in a 

phosphorylated form. Treatment of rat hippocampal neuronal cultures with roscovitine, 

an inhibitor of cdk5, led to loss of the phosphorylated upper p35 band in the 
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immunoblot (Fig. 2A, study IV). Roscovitine also inhibited the phosphorylation of p35 

in rat cortical brain homogenate treated with ATP (Fig. 2B, study IV). Collectively the 

above data suggest that p35 is phosphorylated in rat brain tissue to a significant extent, 

and that the main p35-phosphorylating kinase is cdk5. 

 

Previous studies have suggested that phosphorylation of p35 affects its degradation by 

the proteasome in cultured cells (Patrick et al. 1998, Saito et al. 1998). Indeed, the 

proteasome inhibitor, lactacystin, prevented the increased degradation of p35 in 

neuronal cultures treated with the protein phosphatase inhibitor okadaic acid (Fig. 4, 

study IV), consistent with phosphorylation dependent degradation of p35 by the 

proteasome. To study further the p35 phosphorylation events occurring in the presence 

of okadaic acid, brain homogenate from rat cortex was treated with okadaic acid, in 

combination with ATP for 30 min or 3 h. In brain homogenate, ATP alone induced a 

mobility shift in p35 (Fig. 3A, study IV). Addition of okadaic acid together with ATP 

resulted in a p35 band that migrated slower than the band generated by ATP alone. This 

band likely represents p35 phosphorylated at an additional site. On the top of this main 

band there were multiple less intense bands separated from each other by a distance 

corresponding to the phosphorylation induced shift. These multiple bands probably 

represent p35 phosphorylated at a varying number of additional sites. Roscovitine, an 

inhibitor of cdk5, prevented the formation of the multiple p35 bands, as well as 

changing the mobility of the main phosphorylated p35 band in brain homogenate treated 

with ATP and okadaic acid. However, roscovitine did not inhibit all phosphorylations of 

p35. The data suggest that in brain homogenate, ATP and okadaic acid induce p35 

phosphorylation by cdk5, and by a yet unidentified other kinase(s). The decreased 

intensity of the p35 band in these experiments was not due to proteolytic degradation of 

p35, as a phosphatase treatment of brain homogenate after a reaction with ATP and 

okadaic acid restored the intensity of the p35 band (Fig. 3C, study IV).  

 

Calpain is another p35-cleaving protease, and it is responsible for converting p35 to a 

p25 fragment. We investigated whether the phosphorylation of p35 could modulate also 

this cleavage. In brain homogenates, p35 phosphorylation was first induced with ATP 

and okadaic acid, and thereafter the homogenates were treated with calcium to activate 
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endogenous calpain. Addition of calcium to brain homogenate induced the formation of 

p25, which was augmented when purified calpain II was included (Fig. 5B, study IV). 

Extensive phosphorylation of p35 as a result of ATP and okadaic acid treatment led to a 

diminished amount of p25 production. Inhibition of cdk5-dependent phosphorylation by 

roscovitine partially restored the intensity of p25, suggesting that cdk5-mediated 

phosphorylation could be involved in the phosphorylation-dependent reduction of p35 

cleavage. However, in glutamate treated rat hippocampal neuronal cultures, roscovitine 

did not alter the amount of p25 produced (Fig. 5A, study IV). 
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6. DISCUSSION 

 

6.1. Regulation of cdk5 during neuronal cell death 

 

Cdk5 has been suggested to regulate several different molecular and cellular factors 

involved in neuronal cell death. Events occurring during the course of neuronal death 

could lead to alterations in cdk5, which might amplify the process. In this study, we 

evaluated the changes in the regulation of cdk5 in primary rat hippocampal neuronal 

cultures subjected to various toxic conditions. Although the objective was to mimic the 

processes of neuronal death occurring in different human neuropathological conditions, 

it should be noted, that the cell culture conditions employed, as well as the resulting 

cellular responses, are likely to differ from the corresponding in vivo events. It is 

obvious that the results obtained with neuronal cell cultures need to be supplemented by 

evidence from other experimental model systems or human brain material, whenever 

possible. The analytical methods used in this study mainly involved different types of 

protein analyses from lysates of cultured neurons. Therefore, the results reflect the 

overall cellular responses during neuronal death, whereas the possible events taking 

place only in a minority of cells, or only in specific subcellular locations may not be 

detected. 

 

Induction of cell death in neuronal cultures.  Neuronal death by apoptosis has been 

implicated in several neuropathological conditions (Friedlander 2003). In this study, 

apoptotic cell death was induced in neuronal cultures by subjecting the cells to different 

types of commonly used pro-apoptotic compounds. Etoposide (an inhibitor of 

topoisomerase II), okadaic acid (an inhibitor of protein phosphatases 1 and 2A), 

cyclosporin A (an inhibitor of calcineurin), and HNE (a product of lipid peroxidation) 

have been observed to induce neuronal cell death showing apoptotic features, such as 

apoptotic nuclear morphology and DNA degradation (Nakajima et al. 1994, Cagnoli et 

al. 1996, McDonald et al. 1996, Kruman et al. 1997, Bezvenyuk et al. 2000, Kaminska 

et al. 2001, Kim et al. 2001, Rabacchi et al. 2004). Induction of caspase-3 activity 

confirms that these compounds did activate the apoptotic cascade in our study. Calpain, 
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a calcium-activated protease more closely associated with necrotic cell death, did not 

appear to be significantly activated in these conditions, as the level of calpain-type 

cleavage products of αII-spectrin remained low. Cell death was also induced by treating 

cultured neurons with compounds known to evoke prominent calcium influx, i.e. 

calcium ionophores and glutamate agonists. Glutamate excitotoxicity is believed to be 

involved in neuronal loss in both acute and chronic neuropathological conditions 

(Lipton and Rosenberg 1994). Glutamate treatment of neuronal cultures provides a good 

tool to study excitotoxicity, however the treatment may more closely model acute 

excitotoxicity than chronic conditions. Although we studied the effects of glutamate 

agonists under excitotoxic conditions, the results can be cautiously considered when 

evaluating the post-synaptic effects of glutamate under physiological conditions. In 

neuronal cultures, glutamate excitotoxicity can be alleviated by inhibiting either calcium 

influx or calpain activation (Choi 1987, Brorson et al. 1995a). We detected calpain-type 

cleavage products of αII-spectrin in glutamate-treated neurons, and their appearance 

could be prevented by a calpain inhibitor, showing activation of calpain under these 

conditions. 

 

Cdk5 and p35 protein levels during neuronal death.  During the course of apoptotic cell 

death, the protein levels of p35, p25, and cdk5 were decreased. A similar tendency was 

observed with several different pro-apoptotic treatments, which suggests that the results 

may reflect a general response to this type of condition. The first signs of decreased p35 

and p25 levels generally appeared relatively early during the course of apoptotic cell 

death i.e. in cells showing no or only minor signs for neuritic damage as characterized 

by morphological evaluation. Okadaic acid provoked a particularly early and prominent 

downregulation of p35 and p25 proteins. However, this likely reflects the effect that p35 

phosphorylation has on the proteasomal degradation of this protein (Saito et al. 1998) 

rather than being a consequence of cell death-associated phenomena. The reduction of 

cdk5 protein expression during apoptosis was mainly restricted to severely damaged 

cells. Accordingly, the cdk5 level was decreased also in neurons profoundly affected by 

glutamate treatment. The mechanisms responsible for the reductions in p35, p25, and 

cdk5 protein levels in these conditions remain unknown. 
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Studies regarding the levels of cdk5 and p35 proteins during experimentally induced 

neuronal death have led to somewhat inconsistent conclusions. The variability of 

changes in these protein levels during neuronal death may be explained for instance by 

dissimilar responses to different types of cell death-inducing stimulus. In cultured 

neurons, the protein levels of cdk5 or p35/p25 have been reported to be decreased due to 

oxidative damage (Shirvan et al. 1998, Egana et al. 2003) or hypoxia/reoxygenation 

(Vartiainen et al. 2002), but the levels are increased following exposure to colchicine 

(Canudas et al. 2004) or staurosporine (Zhang et al. 2004a). In experimental animals, 

the immunoreactivities for cdk5 and p35 are frequently induced in cell bodies and 

nuclei during neuronal death characterized by activation of apoptotic mechanisms 

(Henchcliffe and Burke 1997, Zhang et al. 1997, Neystat et al. 2001). The upregulation 

of cdk5 and p35 is especially detected in cells containing fragmented DNA, or apoptotic 

nuclear changes (Henchcliffe and Burke 1997, Zhang et al. 1997, Neystat et al. 2001) 

suggesting that induction of these proteins may be a late event of apoptosis. Activation 

of gene expression would be a straightforward explanation for the upregulation of the 

proteins in these conditions. The cdk5 and p35 mRNA levels have been determined 

during apoptotic neuronal death in the substantia nigra following a striatal lesion, 

however no alterations were detected (Neystat et al. 2001). Also, following ischemia the 

immunostaining for cdk5 and p35 is increased within 1 h in the neuronal cell bodies and 

nuclei in the affected area (Hayashi et al. 1999) revealing that these kinds of changes 

can occur very rapidly. Since cdk5 protein is normally predominantly expressed in 

axons (Tsai et al. 1993, Ino and Chiba 1996, Matsushita et al. 1996, Neystat et al. 2001), 

the increased levels of cdk5 in neuronal cell bodies could alternatively indicate altered 

intracellular localization of the protein in stressful conditions. This kind of phenomenon 

has been observed to take place during kindling progression (Tomizawa et al. 2000, Cai 

et al. 2001). 

 

Calpain-mediated cleavage of p35 during neuronal death.  Increased cleavage of p35 to 

p25 by the calcium-activated calpain protease has been frequently observed in cultured 

neurons subjected to toxic conditions (Kusakawa et al. 2000, Lee et al. 2000, Nath et al. 

2000, Canudas et al. 2004), and in experimental animal models of neurological 

disorders (Lee et al. 2000, Nath et al. 2000, Nguyen et al. 2001, Bu et al. 2002, Smith et 
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al. 2003). Calpain-mediated p35 cleavage has been suggested to deregulate cdk5, which 

may promote neuronal death (Patrick et al. 1999, Cruz et al. 2003, Hamdane et al. 

2003). However, we detected no signs of p35 cleavage to p25 during apoptotic neuronal 

death, which suggests that p35 cleavage is not an universal event in neuronal apoptosis, 

at least in the early phase in the models studied. The lack of p35 cleavage induction was 

in good agreement with the virtual absence of calpain-type cleavage of αII-spectrin. It is 

possible that calpain-induced deregulation of cdk5 may be restricted to conditions 

where calcium influx is particularly intense. One good candidate as an inducer of p35 

cleavage in both physiological and pathological conditions is the major excitatory 

neurotransmitter glutamate. We observed that glutamate treatment of neuronal cultures 

led to rapid calpain-mediated cleavage of p35 to p25, which preceded the appearance of 

signs for cellular damage, i.e. morphological alterations or leakage of the intracellular 

enzyme LDH. Therefore the calpain-induced changes in the function of cdk5 may be 

able to modulate even the relatively early events of glutamate excitotoxicity. The effect 

of NMDA was similar to that of glutamate, whereas calcium ionophores produced p35 

cleavage only in association with severe neuritic damage. 

 

Pharmacological agents specifically modulating different glutamate receptors constitute 

a promising, although challenging, approach to dampen neuropathological processes. 

This approach requires a detailed knowledge on the role of these receptors in activating 

various downstream signaling pathways. We studied the role of different ionotropic 

glutamate receptors in the induction of calpain-mediated p35 cleavage in more detail 

during the very early phase of glutamate excitotoxicity in neuronal cultures. The 

experiments with different glutamate agonists suggest that both NMDA and non-

NMDA classes of glutamate receptors possess the capability to activate p35 cleavage, in 

a manner dependent on extracellular calcium. In mature neuronal cultures, the 

glutamate-induced p35 cleavage was predominantly mediated via the NMDA receptors, 

although also the L-type VSCCs had a significant role. However, in more immature 

developing cultures, the non-NMDA receptors appeared to have more potential to 

activate p35 cleavage than the NMDA receptors. The changes in the capability of 

NMDA to induce p35 cleavage may be a consequence, for instance, from the changes 
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occurring in NMDA receptor subunit expression during maturation of neurons in culture 

(Cheng et al. 1999). 

 

Both NMDA and non-NMDA receptors are able to mediate glutamate excitotoxicity as 

well as calpain activation. The ionotropic glutamate receptor class preferentially 

producing excitotoxicity may vary e.g. depending on the neuronal type (Brorson et al. 

1995a). The calcium-permeable NMDA receptors have been traditionally considered of 

special importance with respect to excitotoxicity. However, the AMPA and kainate 

receptors can also be calcium-permeable, when a specific subunit of the receptor is 

missing, or present in a rare form produced from unedited mRNA (Dingledine et al. 

1999, Tanaka et al. 2000, Arundine and Tymianski 2003). Additionally, activation of all 

of the ionotropic glutamate receptor classes evoke membrane depolarization, which 

contributes to the secondary opening of the VSCCs. As some signaling molecules are 

physically co-localized with specific glutamate receptors, the actual route of calcium 

influx may be more important than the extent of calcium influx in determining which 

intracellular excitotoxic pathways are activated (Sattler et al. 1998, Arundine and 

Tymianski 2003). 

 

Ischemic damage in experimental animals represents a relevant in vivo model of 

neuronal death, having a significant component of excitotoxicity. In ischemia, 

antagonists of both NMDA and non-NMDA receptors reduce neuronal loss in the 

hippocampus, when administered before or shortly after the insult (Simon et al. 1984, 

Buchan et al. 1991). Recently, the calpain-mediated cleavage of p35 following ischemia 

was found to depend on activation of the non-NMDA receptors (Wang et al. 2003). The 

results of the study are compatible with a sequence of events, where activation of the 

non-NMDA receptors leads to cleavage of p35 to p25, and subsequent cdk5-dependent 

phosphorylation of the NR2A subunit of the NMDA receptor. This enhances the flow of 

ions through the NMDA receptors, and thereby promotes cell death of hippocampal 

CA1 neurons. Downregulation of the calcium permeability-preventing GluR2 subunit of 

the AMPA receptors takes place during ischemia, and this has been suggested to 

promote non-NMDA dependent neuronal death (Pellegrini-Giampietro et al. 1992). 

Interestingly, virus-mediated overexpression of GluR2 reduces neuronal death and p35 
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cleavage during ischemia (Liu et al. 2004). Our results provide further evidence that 

activation of the non-NMDA receptors contributes to p35 cleavage. The data with 

nifedipine suggest that also the L-type VSCCs may be involved in the non-NMDA 

receptor induced p35 cleavage. 

 

Desensitization of the non-NMDA receptors is another feature possibly affecting the 

potential of these receptors to mediate glutamate excitotoxicity (Frandsen and 

Schousboe 2003). For instance, in cerebellar neuronal cultures, the selective 

vulnerability of Purkinje cells to excitotoxicity has been proposed to arise from the 

desensitization properties of the AMPA receptors expressed in these neurons (Brorson 

et al. 1995b). Our experiments with desensitization inhibitors of non-NMDA receptors 

revealed that the non-NMDA receptor-activated p35 cleavage was mediated via the 

AMPA receptors in the hippocampal neuronal cultures. The results also imply that the 

desensitization properties of AMPA receptors could significantly modulate the role of 

these receptors in the activation of p35 cleavage. 

 

Cdk5 activity during neuronal death.  The cdk5 activity was generally reduced during 

neuronal apoptosis thus paralleling the decreased amounts of cdk5, p35, and p25 

proteins. However, the protein levels appeared to predict the activity of cdk5 only 

partially, possibly due to the involvement of other factors in the regulation of the kinase 

activity. These other factors could involve changes in cdk5 phosphorylation, or altered 

cdk5-p35 complex stability, as previously reported in neurons subjected to stressful 

conditions (Alvarez et al. 2001, Zambrano et al. 2004). In glutamate-treated neuronal 

cultures, the calpain-mediated cleavage of p35 was associated with increased cdk5 

activity. This is consistent with the increased ability of p25 to activate cdk5 when 

compared to p35 (Amin et al. 2002). Nevertheless, following longer incubation periods 

with glutamate (4 – 6 h), the alterations in the cdk5 activity were not closely related to 

the protein levels of p35, p25, and cdk5.  

 

Increased activity of cdk5, or the qualitative changes in the function of cdk5 induced by 

calpain-mediated p35 cleavage, have been suggested to promote the process of neuronal 

cell death. Our data imply that glutamate could be a potent activator of cdk5-involving 
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mechanisms of neuronal death. However, it is difficult to evaluate the significance of 

decreased cdk5 activity detected during the process of neuronal apoptosis. It can be 

hypothesized that the decline in the activity of cdk5 during neuronal apoptosis could 

reduce the ability of cdk5 to support critical neuronal functions.  

 

6.2. Regulation of p35 proteolysis by phosphorylation 

 

Previous studies suggest that p35 is a phosphoprotein (Lew et al. 1994, Tsai et al. 1994). 

In contrast to phosphorylation of cdk5, phosphorylation of p35 does not seem to 

influence its ability to activate cdk5 (Saito et al. 2003). Phosphorylation of cyclins often 

regulates the degradation of these proteins (Obaya and Sedivy 2002). Accordingly, p35 

phosphorylation could affect the function of cdk5 by modulating the proteolysis of p35. 

 

We analyzed p35 phosphorylation by monitoring the phosphorylation-induced 

retardation in the electrophoretic mobility of the protein by immunoblotting. A 

significant proportion of p35 was detected in a phosphorylated state in the cerebral 

cortex and cerebellum of newborn rats as well as in hippocampal neuronal cultures. The 

phosphorylation of p35 in neuronal cultures and in ATP-treated brain homogenates was 

sensitive to roscovitine, which is a selective inhibitor of cdk5, cdc2, and cdk2 (Meijer et 

al. 1997). As the expression of the cell cycle-associated cyclin-dependent kinases cdc2 

and cdk2 become downregulated during neuronal differentiation (Hayes et al. 1991, 

Freeman et al. 1994, Shirvan et al. 1998, Courtney and Coffey 1999), the roscovitine-

sensitive kinase responsible for p35 phosphorylation in these conditions is most likely 

to be cdk5. This is also supported by the observations showing phosphorylation of p35 

in vitro by purified cdk5 (Lew et al. 1994, Tsai et al. 1994, Saito et al. 2003). 

 

Previously p35 has been found to be ubiquitinated, and degraded in a manner dependent 

on phosphorylation of p35, and on the proteasome (Patrick et al. 1998). In cultured 

neurons the protein phosphatase inhibitor, okadaic acid, induces degradation of p35 

(Saito et al. 1998). This can be prevented by a proteasome inhibitor consistent with 

phosphorylation-dependent degradation of p35 by the proteasome. Our data with 

hippocampal neuronal cultures treated with okadaic acid in the presence of lactacystin 
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confirm this finding. The cdk5-mediated phosphorylation of p35 has been suggested to 

promote proteasomal degradation of p35 (Patrick et al. 1998). However, the finding that 

a significant proportion of p35 exists in a cdk5-phosphorylated state in cultured 

neurons, may indicate that phosphorylation of p35 by cdk5 alone is not a sufficient 

signal for proteasomal degradation of p35. With respect to the p35 degradation-

promoting effect of okadaic acid, this may be caused by additional phosphorylation of 

p35 by another kinase. In ATP-treated brain homogenate, okadaic acid induced 

phosphorylation of p35 at two sites, whereas ATP alone caused p35 phosphorylation at 

one site only. One of these two sites is likely phosphorylated by cdk5, whereas the other 

site appears to be phosphorylated by an unknown roscovitine-insensitive kinase. 

Phosphorylation of p35 by these kinases could provide a means to regulate p35 

proteolysis, and thereby the function of cdk5, in physiological situations. Aberrations in 

the ubiquitin-proteasome system have been implicated in  neurodegenerative disorders, 

such as PD and AD (Ciechanover and Brundin 2003). Currently there are no reports 

indicating that the proteasomal dysfunction in these disorders would be associated with 

a general accumulation of p35. Nevertheless, the proteasomal alterations might 

specifically delay the degradation of the phosphorylated p35 species, thereby affecting 

the possible regulation of cdk5 involving p35 phosphorylation. 

 

We also studied the effect of p35 phosphorylation on the calpain-dependent cleavage of 

p35 to p25. In brain homogenate, phosphorylation of p35 induced by pre-incubation 

with ATP and okadaic acid reduced the amount of calcium-activated calpain-dependent 

cleavage of p35. The cdk5 inhibitor roscovitine partially prevented the effect of the 

phosphorylation reaction on the calpain-mediated p35 cleavage. However, roscovitine 

did not affect the calpain-mediated cleavage of p35 induced by glutamate in neuronal 

cultures. Based on these results, phosphorylation of p35 can reduce its calpain-mediated 

cleavage, whereas the role of cdk5-dependent p35 phosphorylation in this process 

remains elusive. The study by Saito et al. (2003) confirms that phosphorylation of p35 

indeed reduces the calpain-mediated cleavage of p35 in vitro, and provides additional 

evidence for a role for cdk5-induced p35 phosphorylation in this process. Their data 

further suggest that phosphorylation and proteolysis of p35 is developmentally 

regulated. p35 in fetal rat brains was highly phosphorylated and susceptible to 
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proteasomal degradation, whereas in adult brains p35 was less phosphorylated and more 

readily cleaved by calpain. Thus the developmental alterations in the phosphorylation of 

p35 may switch the regulation of cdk5 to a different mode. The authors also hypothesize 

that the age-dependent susceptibility of p35 to calpain-mediated cleavage may be 

related to age-dependent neuronal cell death in neurodegenerative diseases. 

 

6.3. The relationship between cdk5 and tau phosphorylation 

 

Cdk5 has been hypothesized to induce tau hyperphosphorylation under severe 

conditions, in particular following calpain-mediated cleavage of the p35 activator 

protein (Patrick et al. 1999, Ahlijanian et al. 2000, Lee et al. 2000, Nath et al. 2000, 

Cruz et al. 2003). For this reason, we monitored also the phosphorylation of tau protein 

in association with cdk5 during experimentally induced death of cultured neurons. 

Apoptotic neuronal death resulted in generally decreased p35, p25, and cdk5 protein 

levels and cdk5 activity, which was associated with reduced phosphorylation of the tau 

protein. However, tau phosphorylation was decreased also during glutamate 

excitotoxicity, despite of the concomitant calpain-mediated cleavage of p35 to p25, and 

increased cdk5 activity. In principle, a minor effect of the elevated cdk5 activity on tau 

phosphorylation could have been masked by other concurrent changes occurring in 

these conditions. Nevertheless, inhibition of calpain in glutamate-treated neurons had no 

effect on tau phosphorylation, which suggests that calpain-activated processes, i.e. p35 

cleavage to p25, do not contribute to tau phosphorylation. Thus the changes in the 

regulation of cdk5 during neuronal death do not invariably reflect the phosphorylation 

status of tau. 

 

Studies regarding tau phosphorylation during neuronal death in culture have produced 

highly inconsistent results. For instance, treatment of cultured neurons with glutamate 

agonists or calcium ionophores has resulted in both increased (Mattson 1992, Sindou et 

al. 1994) and decreased (Davis et al. 1995, Fleming and Johnson 1995, Saito et al. 1995, 

Adamec et al. 1997, Hull et al. 1999, Lorio et al. 2001, Takashima et al. 2001) 

phosphorylation of tau. Although these inconsistent results may be partially explained 

by the different experimental approaches employed, it seems that tau 
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hyperphosphorylation is not an general event in neuronal death. The molecular 

mechanisms leading to reduced tau phosphorylation during apoptotic and excitotoxic 

neuronal death in our study remain elusive. At least during glutamate excitotoxicity, the 

changes in tau phosphorylation occurred irrespective of the alterations in cdk5. Other 

investigators have reported that inhibitors of the calcium-dependent protein phosphatase 

calcineurin prevent dephosphorylation of tau occurring in neurons treated with NMDA, 

or with a calcium ionophore (Fleming and Johnson 1995, Saito et al. 1995). Activation 

of calcineurin could have taken place in the conditions used in our study, especially in 

the neuronal cultures treated with glutamate agonists or calcium ionophores. 

 

Our results showing dephosphorylation of tau protein concomitantly with calpain-

mediated cleavage of p35 to p25 are in apparent conflict with the hypothesis that 

activation of p35 cleavage during neurotoxic conditions would invariably lead to cdk5-

mediated tau phosphorylation. That hypothesis is mainly based on the following 

findings. First, p35 cleavage frequently takes place in various cell culture and in vivo 

conditions involving neuronal death (Kusakawa et al. 2000, Lee et al. 2000, Nath et al. 

2000, Nguyen et al. 2001, Bu et al. 2002, Smith et al. 2003). Second, p25 is more 

efficient than p35 in activating cdk5-mediated tau phosphorylation in vitro, in 

transfected cell cultures, and in transgenic animals (Patrick et al. 1999, Ahlijanian et al. 

2000, Hashiguchi et al. 2002, Cruz et al. 2003, Hamdane et al. 2003). However, the 

evidence suggesting that the calpain-mediated cleavage of the endogenous p35 during 

neuronal death would indeed cause an increase in tau phosphorylation is weak. Our 

findings indicate that this gap in the current knowledge may be significant. The cellular 

effects of overexpressed p25, and p25 released from the endogenous p35, could be 

different for a number of reasons. For instance, overexpressed proteins may be produced 

in an unphysiologically high amount, in an abnormal subcellular location, or in the 

absence of other calcium-activated processes. Nevertheless, cleavage of endogenous 

p35 has been observed in association with increased phosphorylation of tau in some 

experimental animal models of neurological disorders (Nath et al. 2000, Nguyen et al. 

2001, Bu et al. 2002, Smith et al. 2003, Wang et al. 2003). Cdk inhibitors reduce tau 

phosphorylation in some of these models (Smith et al. 2003, Wen et al. 2004, Zhang et 
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al. 2004b), however the contribution of cdks other than cdk5 to tau phosphorylation in 

these conditions is a significant possibility.  

 

The hypothesis regarding the role p25 in cdk5-mediated in tau hyperphosphorylation 

may require updating. Based on the overexpression models, p25 may indeed possess a 

greater potential than p35 to induce tau phosphorylation. Nevertheless, the calpain-

mediated cleavage of the endogenous p35 as such may not be sufficient to activate tau 

phosphorylation. It is possible that in neurodegenerative tauopathies there could be 

some additional factors affecting cdk5, tau, or other cellular elements in such a manner 

that the calpain-dependent cdk5-mediated effect on tau phosphorylation would be 

augmented. This kind of additional factors could be involved for instance in the p25-

cdk5-mediated phosphorylation of tau detected in neurons exposed to β-amyloid. It was 

recently reported, that p35 and p25 as such evoke tau phosphorylation in a comparable 

manner in cultured neurons overexpressing these proteins. However, in the context of 

amyloid toxicity, there was a striking increase in tau phosphorylation, that could be 

prevented by specifically inhibiting the function of p25-cdk5 (Zheng et al. 2005). One 

largely neglected possibility is that cdk5-mediated hyperphosphorylation of tau could 

take place in a manner completely independent of the calpain-mediated cleavage of 

cdk5 activators. Further studies will be required to resolve these issues. 
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7. CONCLUSIONS 

 

The aim of the present study was to investigate the regulation of cdk5, especially during 

neuronal cell death, and to evaluate the possible association between cdk5 and 

phosphorylation of the tau protein. The following conclusions can be drawn: 

 

1. Apoptosis induced in rat hippocampal neuronal cultures by different pro-apoptotic 

stimuli is associated with reduced protein levels of p35, p25, and cdk5, as well as 

with decreased cdk5 activity and tau phosphorylation. 

 

2. During cell death induced by glutamate, NMDA, and calcium ionophores in 

cultured neurons, there is prominent calpain-mediated cleavage of p35 to p25. 

Although this is associated with increased cdk5 activity, at least in the glutamate-

treated neurons, the phosphorylation of tau protein is concomitantly reduced. 

 

3. Calpain-mediated cleavage of p35 to p25 can occur downstream of activation of 

both NMDA and non-NMDA classes of glutamate receptors. The NMDA receptors 

predominantly mediate the effect of glutamate in the cultured hippocampal neurons. 

Functional variation in the glutamate receptors related for instance to changes 

occurring during neuronal maturation, or to differential desensitization properties, 

may determine the potential of different receptor classes to induce p35 cleavage. 

 

4. A significant proportion of p35 is in a phosphorylated state in vivo. Phosphorylation 

of p35 appears to affect its proteolytic degradation by the proteasome, as well as the  

calpain-mediated cleavage of p35 to p25. A roscovitine-sensitive kinase, likely 

cdk5, and another unknown kinase, are able to phosphorylate p35. 

 

In conclusion, this study provides new information on the regulation of cdk5. The 

findings increase the knowledge required to evaluate the possible role of cdk5 in various 

neuropathological conditions. 
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