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ABSTRACT 

Stroke represents one major cause of epilepsy. The underlying mechanisms of 
epileptogenesis, however, are not known. Valid animal models are needed if one wishes to 
clarify which factors associate with epileptogenesis after focal cerebral ischemia. The present 
study aimed to investigate the occurrence of post-stroke epilepsy in rats using the transient 
intraluminal filament model of middle cerebral artery occlusion (filament model of MCAo), 
the endothelin-1 induced middle cerebral artery occlusion (ET-induced MCAo) and the 
cortical photothrombosis with Rose Bengal (photothrombosis). Video-EEG was intermittently 
recorded up to 12 months after ischemia induction to monitor the occurrence of seizures. In 
addition, sensorimotor and learning and memory performance of the rats were assessed. At 
the end of the follow-ups, the association between late seizures and hippocampal cell loss and 
aberrant mossy fiber sprouting was investigated. No electrographic seizures were observed 
after the filament model of MCAo, but after ET-induced MCAo one rat out of 26 had seizures 
and after the photothrombosis 7 rats out of 36 experienced convulsions. After the ET-induced 
MCAo, the epileptic rat did not develop aberrant mossy fiber sprouting in the dentate gyrus of 
the hippocampus. After the photothrombosis, the hilar cell number did not differ between rats 
with and without seizures, but the occurrence of seizures was associated with slightly denser 
mossy fiber sprouting when compared to non-epileptic animals. The behavioral data could not 
be compared between rats with and without late seizures due to the small number of rats with 
epilepsy in the groups. In summary, the development of epilepsy was a rare occurrence in two 
models of large artery occlusion. In contrast, cortical thrombotic small vessel occlusion 
produced the highest percentage of rats with epilepsy. Following the cortical 
photothrombosis, the epileptogenesis was associated with changes in the hippocampus in 
addition to changes in the primary lesion site. In conclusion, the cortical photothrombosis 
with Rose Bengal dye in rats seems to be suitable for use in studies of epileptogenesis after 
small cortical thrombotic lesions.  
 
 
National library of Medicine Classification: WL 314, WL 355, WL 385 
Medical Subject Headings: Epilepsy/etiology; Brain Ischemia; Cerebrovascular Accident; 
Infarction, Middle Cerebral Artery; Seizures; Hippocampus; Mossy Fibers, Hippocampal; 
Learning; Memory; Psychomotor Performance; Electroencephalography; Disease Models, 
Animal; Rats 
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1. INTRODUCTION  

Stroke represents an underlying cause of recurrent seizures in 30% of the symptomatic 

epilepsy cases (Hauser, 1992). Furthermore, the incidence of post-stroke epilepsy is on the 

increase as the population ages. It is believed that the major factors associated with the 

development of post-stroke seizures and epilepsy are the size and the cortical location of the 

lesion and the hemorrhagic involvement (Gupta et al., 1988; Faught et al., 1989; Ryglewicz et 

al., 1990; Kotila and Waltimo, 1992; Giroud et al., 1994; So et al., 1996; Arboix et al., 1997; 

Burn et al., 1997; Paolucci et al., 1997; Bladin et al., 2000; Bentes et al., 2001; Labovitz et al., 

2001; Cheung et al., 2003; Lamy et al., 2003; Vespa et al, 2003; De Reuck et al., 2006a). 

Although stroke can be viewed as a precipitating insult for epilepsy, the underlying 

mechanisms are still far from clear.  

Valid animal models are needed if one wishes to investigate the factors that have effect 

on epileptogenesis after stroke. Confounding factors that are commonly observed in stroke 

patients, such as medication, can be eliminated when using animal models (Zorowitz et al., 

2005a; Zorowitz et al., 2005b; Zorowitz et al., 2005c). In addition, the underlying 

mechanisms of epileptogenesis after cerebral ischemia can be investigated from the initial 

insult to the epileptogenesis phase and ultimately to recurrent seizures (Pitkänen and Sutula, 

2002). Further, new treatment options for post-stroke seizures can be tested before clinical 

trials and the effect of antiepileptic drug (AED) treatment on the recovery process can be 

studied.  

Previous experimental trials have shown that early onset seizures can be observed after 

both global and focal cerebral ischemia (Kudo et al., 1982; Truong et al., 1994; Reid et al., 

1996; Uchino et al., 1996; Krugers et al., 2000; Lu et al., 2001; Wang et al., 2001; Shuaib et 

al., 2002; Williams and Tortella, 2002; Hartings et al., 2003; Williams et al., 2004a). Further, 

half of the young adult animals may develop epilepsy after a cortical photothrombotic lesion 

(Kelly et al., 2001; Kharlamov et al., 2003). In contrast, it seems that the development of 

epilepsy is absent or at least rare following the combined occlusion of the middle cerebral and 

common carotid arteries (Kelly et al., 2006). Despite the available animal models of stroke, it 

still remains to be elucidated how the development of epilepsy associates with the brain 

pathology and behavioral recovery after cerebral ischemia.  
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The present study aimed to investigate the occurrence of post-stroke epilepsy in rats 

using the transient intraluminal filament model of the middle cerebral artery occlusion 

(MCAo), endothelin-1 (ET) induced MCAo and cortical photothrombosis with Rose Bengal 

dye. The occurrence of seizures was monitored intermittently with video-

electroencephalography (video-EEG) for up to 12 months. The association with brain 

pathology and spontaneous late seizures was investigated. Furthermore, one aim was to study 

whether sensorimotor or learning and memory performance associates with epileptogenesis 

after focal cerebral ischemia.  
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2. REVIEW OF THE LITERATURE  

2.1 Cerebral stroke - the initial insult 

It is estimated that 1.3% of the population in Western countries has experienced a 

cerebral stroke, i.e. a sudden loss of neurologic function due to a vascular incident (Wolf et 

al., 1998). Stroke imposes a major burden on society; it accounts for 2-4% of health care costs 

(Bergman et al., 1995; Evers et al., 1997). The major components of the life-time costs 

include the expenses of acute hospitalization, rehabilitation and nursing home care (Dewey et 

al., 2001). This is due to the fact that even though about two thirds of the surviving stroke 

patients recover to be independent in their daily activities, the rest will need either assistance 

or institutional care (Miyai and Reding, 1998). In addition to the disabling state, stroke is 

often accompanied by other sequelae such as epileptic seizures, fractures, cognitive 

impairment and depression (Kotila and Waltimo, 1992; Censori et al., 1996; So et al., 1996; 

Bladin et al., 2000; Lossius et al., 2002; Cheung et al., 2003; Whitson et al., 2006). 

 

2.2 Post-stroke seizures and epilepsy  

An epileptic seizure is an unpredictable and transient interruption of normal brain 

function due to an abnormally synchronous and excessive firing of neurons (Fisher et al., 

2005). Seizures can be divided into partial seizures and generalized seizures according to 

whether they are restricted to one hemisphere or whether they involve both hemispheres from 

the onset, respectively (Engel et al., 2001). Seizures occurring within the first day after the 

brain insult are considered provoked, irrespective of whether the patient develops epilepsy or 

not.  

Epilepsy is the collective name for a diverse set of disorders of the brain that have an 

abnormal predisposition to epileptic seizures (Fisher et al., 2005). The definition of epilepsy 

includes the requirement of at least one seizure and the presence of an enduring alteration in 

the brain (Fisher et al., 2005). Epilepsy syndromes or types of epilepsy can be classified into 

three groups. In the idiopathic epilepsy syndromes, the epilepsy exists without an underlying 

lesion or without any known brain disorder (Engel et al., 2001). They are believed to be 

genetically determined. The present study aimed to model symptomatic epilepsy which is due 

to a disorder or a lesion in the brain (Engel et al., 2001). In the elderly, the most commonly 

identified cause of symptomatic epilepsy is cerebrovascular disease (Hauser, 1992). In 
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presumed symptomatic (cryptogenic) epilepsy, some acquired cause is thought to underlie the 

epilepsy, but this cannot be identified with current methods (Engel et al., 2001).  

 

2.2.1 Occurrence of seizures after stroke  

After an ischemic stroke, seizure occurrence exhibits a bimodal distribution (Sung and 

Chu, 1990; Bladin et al., 2000). The first peak in seizure occurrence is within 2 weeks and the 

second peak is between 6 to 12 months after the stroke (Sung and Chu, 1990; Bladin et al., 

2000). About 40% of all epileptic seizures that are observed during the mean follow-up time 

of 9 months occur within the first day after the ischemic stroke and more than 20% of all 

seizures between 6 to 12 months (Bladin et al., 2000). In contrast, after intracerebral 

haemorrhage, 60% of the seizures occur during the first 24 hours and after that time, the 

seizure occurrence declines (Bladin et al., 2000).  

The percentages of patients suffering seizures and epilepsy have varied due to 

differences in data collection, patient inclusion criteria and follow-up time (Table 1). To 

briefly summarize, seizures have been reported to occur from 3% to 15% and epilepsy from 

3% to 14% of the patients with ischemic stroke in those studies with long follow-up times 

(Kotila and Waltimo, 1992; Paolucci et al., 1997; Bladin et al., 2000; Cheung et al., 2003). 

After hemorrhage, between 4% to 29% of the patients have been described as experiencing 

seizures and from 3% to 15% develop epilepsy (Kotila and Waltimo, 1992; Paolucci et al., 

1997; Bladin et al., 2000; Cheung et al., 2003).  

 

2.2.2 Factors associated with the occurrence of post-stroke seizures and epilepsy  

 An almost two-fold increased risk of seizures is observed in patients with hemorrhagic 

stroke when compared with ischemic stroke patients (Bladin et al., 2000). In addition, it is 

believed that the two most important factors associated with seizures and epilepsy after stroke 

are the large size and cortical location of the lesion (Table 2; Gupta et al., 1988; Faught et al., 

1989; Ryglewicz et al., 1990; Giroud et al., 1994; So et al., 1996; Arboix et al., 1997; Burn et 

al., 1997; Bladin et al., 2000; Bentes et al., 2001; Labovitz et al., 2001; Cheung et al., 2003; 

Lamy et al., 2003; Vespa et al, 2003; De Reuck et al., 2006a). The majority of patients with 

post-stroke seizures have a lesion in the cerebral cortex with or without the involvement of 

the subcortical regions (Bladin et al., 2000, Dhanuka et al., 2001; Lossius et al., 2002).  
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TABLE 1. Clinical studies investigating post-stroke seizures and epilepsy.  
 

Ref. 
 

Data 
collection 

 

Patient  
Inclusion 

 

Follow-
up 
 

 

Patients  
(n) 

 

Mean 
age (y) 

 

Males 
 

Seizures 
 

Epilepsy 

         
Faught et 
al., 1989 

One hospital First-ever ICH mean  
4.6 y  

123 61.8 46% 25.2% - 

         
Sung and 
Chu, 1990 

One hospital IBI (cerebral 
thrombosis) 

20 mo for 
early sz 
and 22 
mo for 
late sz 

118 (76 
with 
complete 
data) 

63.0 61% 5% prior 
stroke; 28% 
within 1 mo; 
68% within 1 
y; 86% 
within 2 y 

- 

         
Kotila and 
Waltimo, 
1992 

One 
department 

IBI, ICH or 
SAH and 
ambulatory 
rehabilitation 
needs 

 2.7 -  
52.9 mo 
(mean 
39.9 mo) 

200 total; 
157 IBI; 
20 ICH; 
23 SAH 

52.3 74% - 17% total; 
14% IBI;  
15% ICH;  
35% SAH 

         
Giroud  
et al., 
1994 

Population- 
based stroke 
registry  

IBI, ICH, SAH 
or TIA with CT 
scan 

0-15 d  1640 
total; 
1213 IBI; 
168 ICH; 
259 TIA 

73.0 53% 5.5% total; 
4.9% IBI;  
14.8% ICH; 
2% TIA 

- 

         
So et al.,  
1996 

Population- 
based medical 
registry 

IBI 5.5 y 535 
 

71.6 52% 6.2% had sz 
on 0-7 d; 
6.2% had sz 
after >7d  

4.1 % 

         
Arboix  
et al., 1997 

Population- 
based stroke 
registry 

First-ever IBI, 
ICH, SAH, TIA 
or sub-
/epidural 
hematomas 

0-48 h  1220 
total; 
1012 IBI; 
81 ICH; 
127 TIA 

69.5 52% 2.4% total; 
2% IBI; 
4% ICH 
1.6% TIA 

- 

         
Burn et al., 
1997 
 

Prospective, 
community- 
based stroke 
registry 

First-ever IBI, 
ICH or SAH 

> 2 y 675 total; 
545 IBI; 
66 ICH; 
33 SAH; 
31 ? 

72.2 47% 7.7% total; 
6% IBI; 
11% ICH; 
18% SAH; 
0% ? 

- 

         
Paolucci et 
al., 1997 

Rehabilitation 
unit 

First-ever IBI 
or ICH with 
physical 
rehabilitation 
needs and age 
≤79 y 

1.0 y 306 total; 
247 IBI;  
59 ICH 

63.6 50% 15.0% total; 
14.6% IBI; 
28.6%ICH 

- 

         
Reith et al., 
1997 
 

Prospective, 
community- 
based (one 
department) 
 

IBI or ICH 0-14 d 1195 
total; 
900 IBI 
75 ICH 
220? 

76.6 
with sz; 
74.2 
without 
sz 

46% 4.2% total;  
11% IBI on 
CT; 
17% ICH on 
CT 

- 

         
Bladin et 
al., 2000 
 

Prospective, 
multicenter, 
international  

IBI or ICH mean  
9 mo  

1897 
total; 
1632 IBI; 
265 ICH  

72.0 58% 9% total; 
8.6% IBI;  
10.6% ICH 

2.5% total; 
2.5% IBI;  
2.6% ICH 

         
Bentes et 
al., 2001 

Hospital-based 
stroke registry 

First-ever 
subcortical IBI 

> 1 y 113 57.0  73% 3.5% - 

         
Dhanuka 
et al., 2001 

Prospective, 
one 
department 

IBI or ICH and 
diagnosis of 
post-stroke sz 

3-60 mo 
(mean 
15.9 mo) 

35 total; 
20 IBI 
15 ICH 

45.4 57% 77% had 
early sz; 
23% had 
late sz 

11% total;  
- IBI; 
- ICH 
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TABLE 1. Clinical studies investigating post-stroke seizures and epilepsy 
(continued).  

Abbreviations: -, data not available/shown; ?, unknown cause; h, hemorrhagic changes; IBI, ischemic 
brain infarct; ICH, intracerebral hemorrhage; IDST, intracranial dural sinus thrombosis; PSE, post-
stroke epilepsy; SAH, subarachnoid hemorrhage; sz, seizure; TIA, transient ischemic attack; total, all 
cases included; VI, venous infarction. 

 
Ref. 

 
Data 
collection 

 
Patient 
inclusion 

 
Follow-
up 
 

 
Patients  
(n) 

 
Mean 
age (y) 

 
Males 

 
Seizures 

 
Epilepsy 

         
Labovitz  
et al., 
2001 

Population- 
based stroke 
registry 

IBI, ICH or SAH sz before 
and/or 0-
60 d 

904 total; 
704 IBI; 
150 ICH; 
50 SAH 

68.3 44% 4.1% total; 
3.1% IBI; 
7.3% ICH; 
8.0% SAH 

- 

         
Velioglu et 
al., 2001 

One hospital First-ever IBI or 
ICH 

mean  
3.7 y 
(with sz) 

1174 total; 
- IBI; 
- ICH 

59.7 58% 15.3% 
total; 
- IBI; 
- ICH 
 

- 

         
Leys et 
al., 
2002 

Prospective, 
one stroke 
unit 

IBI or IBI + h. 
and age 15 - 45 
y  

median  
3 y 

287 total; 
282 IBI; 
5 IBI + h. 

36.0 55% 6.6% total; 
- IBI; 
- IBI + h. 

- 

         
Lossius et 
al., 2002 
 

One hospital IBI or ICH and 
age ≥60 y and 
in hospital within 
24 h of onset of 
symptoms 

0-12 mo 
 

472 (1.5% 
with prior 
epilepsy) 

75.0 with 
PSE; 
76.0 
without 
PSE 

51% 3.4% total; 
- IBI; 
- ICH 

2.5% total; 
- IBI; 
- ICH 

         
Cheung et 
al., 2003 

Population- 
based stroke 
registry 

IBI, ICH or SAH 1 y 994 total; 
752 IBI; 
242 
ICH+SAH 

70.7 54% 3.4% total; 
3.3% IBI;  
3.7% 
ICH+SAH 

0.7% total; 
- IBI; 
- ICH+SAH 

         
Lamy et 
al., 2003 

Prospective, 
multicenter 

IBI (≤ 3 mo) and 
age 18 - 55 y  

37.8 ± 
9.7 mo 

581 (1.2% 
with prior 
epilepsy) 

42.5 57% 2.4% had 
sz on 0-7 d; 
3.4% had 
sz after >7d 

1.9% total; 
55% of 
patients 
with sz 
after >7d 

         
Varona et 
al., 2004 

Stroke 
registry 

First-ever IBI 
and age 15-45 y 

11.7 y 272 36.6 65% 10% - 

         
Lossius et 
al., 2005 

One hospital IBI and age  ≥60 
y and in hospital 
within 24 h of 
onset of 
symptoms 

range 
14-96 
mo 

484 74.3 with 
PSE; 
76.3 
without 
PSE 

52% 5.7% 3.1% 

         
Benbir et 
al., 2006 

Stroke unit  IBI or ICH and 
no prior epilepsy 

mean 
5.5 ± 2.4 
y 

1428 total; 
1327 IBI; 
86 ICH; 
15 VI and 
IDST 

62.8 59% - 3.6% total; 
2.7% IBI; 
12.8% ICH; 
26.6% VI 
and IDST 

         
Sylaja  
et al., 
2006 

One hospital IBI and CT 
within 24 h 

90 d 326 - 
(median 
73.0) 

- 1.5% had 
sz at onset 
of stroke 

- 
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TABLE 2. Factors associated with post-stroke seizures and epilepsy in clinical 

studies. 

 

 

Reference 
 

 

Early seizures 
 

 

Late seizures 
 

Seizures 
 

Epilepsy 
     

Ischemic 
Gupta et al., 1988 

- - - lesion in ctx and 
subcortical structures 

     
Giroud et al., 1994 emboligenic cardiac 

condition 
- - - 

     
So et al., 1996 anterior lesion 

location*; embolus 
recurrent stroke*; 
early onset of 
seizures*  

- recurrent stroke*; early 
onset of seizures* 

     
Arboix et al., 1997 lesion size; lesion in 

ctx*; hemorrhagic 
involvement; 
younger age; acute 
confusional state* 

- - - 

     
Burn et al., 1997 - - anterior lesion 

location 
- 

     
Bladin et al., 2000 - - lesion in ctx* or 

striatum; disability* 
late onset of seizures* 

     
Bentes et al., 2001 lesion in the 

striatum; 
emboligenic cardiac 
condition 
 

- - - 

     
Lamy et al., 2003 lesion in ctx* lesion size*, lesion 

in ctx*; hemorrhagic 
involvement; 
disability*; loss of 
consciousness; 
early onset of 
seizures* 

- - 

     
Cheoung et al., 2003 - - lesion in ctx*; 

anterior lesion 
location 

- 

     
De Reuck et al., 2006a - lesion size  - - 

     

Hemorrhagic 
Faught et al., 1989 

- - lesion in ctx or 
caudate nucleus 

- 

     
Giroud et al., 1994 lesion in ctx - - - 

     
Bladin et al., 2000 - - lesion in ctx* - 

     
Cheoung et al., 2003 - - lesion in ctx* - 

     
Vespa et al., 2003 lesion in ctx - - - 
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TABLE 2. Factors associated with post-stroke seizures and epilepsy in clinical 

studies (continued). 

Abbreviations: *, result from multivariate analysis; anterior, lesion location in the anterior circulation 
territory; all cases, ischemic and hemorrhagic stroke cases combined; ctx, cortex; early seizures, 
seizures that occur 0-2 wk after stroke; late seizures, seizures that occur more than 2 wk after stroke; 
seizures, early and late seizures combined. 
 

2.2.3 Neurological deficits and post-stroke seizures and epilepsy 

The clinical severity of stroke at admission to hospital can predict the occurrence of 

early onset seizures, late onset seizures and the development of epilepsy (Paolucci et al., 

1997; Reith et al., 1997; Lossius et al., 2002; Lamy et al., 2003). Further, seizures are 

observed in 6% of young ischemic stroke patients, who do not need help in their daily 

activities (Leys et al., 2002). In comparison, more than 13% of the patients develop seizures 

when they are dependent in their daily activities (Leys et al., 2002). Poor functional ability is 

 

Ref. 
 

Early seizures 
 

 

Late seizures 
 

Seizures 
 

Epilepsy 
All cases 

Ryglewicz et al., 1990 
- - - lesion size; lesion in 

ctx 
     

Kotila & Waltimo, 1992 - - - hemorrhage; female 
gender 

     

Giroud et al., 1994 lesion in ctx; 
hemorrhage; male 
gender; loss of 
consciousness 

- - - 

     
Burn et al., 1997 - - hemorrhage; early 

seizures 
- 

     
Paolucci et al., 1997 hemorrhage*; 

younger age*; 
disability*  

hemorrhage*, 
disability 

  

     
Reith et al., 1997 emboligenic cardiac 

condition; disability* 
- - - 

     
Bladin et al., 2000   hemorrhage* late seizures* 

     
Dhanuka et al., 2001 - - - late seizures 

     
Labovitz et al., 2001 disability - - - 

     
Lossius et al., 2002 - - - disability* 

     
Cheoung et al., 2003 - - lesion size; lesion in 

ctx; age >65 y; male 
gender* 

- 

     
Cordonnier et al., 2005 disability*; pre-

existing dementia 
 

- - - 

     
Benbir et al., 2006 - - - hemorrhage, venous 

infarctions 
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also an identified predictor of the appearance of status epilepticus after stroke (Velioglu et al., 

2001).   

 A seizure at stroke onset need not have any influence on the ultimate outcome of the 

patients (Burn et al., 1997; Reith et al., 1997). In contrast, when the initial post-stroke seizure 

appears more than 2 wk after the initial insult, this may be followed by a transient or even a 

permanent worsening of the neurological deficit (Bogousslavsky et al., 1992; Lamy et al., 

2003; Vespa et al., 2003; De Reuck et al., 2006a). After status epilepticus, a neurological 

deterioration is observed in 48% of the stroke patients and further, this deterioration is 

permanent in 6% of these cases (Rumbach et al., 2000). However, negative results have also 

been obtained in a study with patients needing rehabilitation since the occurrence of seizures 

more than 2 weeks after the stroke did not have any effect on the rehabilitation or functional 

outcome (Paolucci et al., 1997). 

 The worsening of the neurological deficit after late post-stroke seizures may be 

associated with partial seizures of longer duration or multiple partial seizures with secondary 

generalization (Bogousslavsky et al., 1992; Lamy et al., 2003). A new cerebral lesion or an 

extension of the existing lesion might underlie the phenomenon of a worsening of the 

neurological deficit after late post-stroke seizures (De Reuck et al., 2006a), although not all 

studies have found this association (Bogousslavsky et al., 1992; Lamy et al., 2003). The 

question still remains whether the extension of a lesion is due to a new vascular incident or 

whether it is secondary to a seizure-induced damage (De Reuck et al., 2006a).  

 In addition to seizures, AED treatment after stroke can also have an influence on the 

recovery (Goldstein, 1993; Goldstein, 1998). Interestingly, AEDs are prescribed for stroke 

patients for other causes in addition to seizure therapy. About 68% of stroke patients receive 

pain medication and more than 98% of them are treated with AEDs, such as gabapentin, 

clonazepam, carbamazepine and levetiracetam (Zorowitz et al., 2005a). 

 

2.3 Seizures, epilepsy and recovery after brain ischemia in rats 

2.3.1 Seizures and epilepsy after large artery occlusions 

The occurrence of early and late seizures has been described after the intraluminal 

filament model of MCAo and after the combined occlusion of MCA and common carotid 

artery (CCA). Briefly, in the intraluminal filament model of MCAo, a filament is introduced 

into the internal carotid artery (ICA) and advanced until it blocks the blood flow to the MCA 
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(Longa et al., 1989). In permanent occlusion, the filament is left permanently in the artery. In 

transient occlusion, the filament is retracted to permit the reperfusion. In another large artery 

occlusion model, the blood flow is blocked in MCA distally to the lenticulostriate arteries 

through a burr hole made in the skull. A concomitant occlusion of the ipsilateral common 

carotid artery (CCA) is induced via a neck incision (Aronowski et al., 1997).  

Early seizures occur after transient and permanent MCAo with the intraluminal filament 

model in rats (Lu et al., 2001; Hartings et al., 2003; Williams and Tortella 2002; Williams et 

al., 2004a). After transient MCAo, about 80% of the rats demonstrate non-convulsive 

seizures, which occur approximately 25 min following the occlusion and last about 2 minutes 

(Williams and Tortella, 2002). After the permanent MCAo, about 90% of the rats demonstrate 

non-convulsive seizures, which appear approximately 30 to 60 minutes following the 

occlusion and last, on average, for 50 to 70 seconds (Williams et al., 2004a; Williams et al., 

2006). The majority of the early seizures occur during the first 2 hours after the MCA 

occlusion in rats (Hartings et al., 2003; Williams et al., 2004a).  

 The occurrence of late seizures after large artery occlusions seems to depend on the age 

of the rats at the ischemic induction. In 2.5-months old Long-Evans rats, the combined 

occlusion of the MCA and CCA does not result in late epileptic seizures during the 6-month 

long follow-up period (Kelly et al., 2006). In contrast, 25% of 4-month old rats and 100% of 

20-month old F344 rats exhibit epileptic seizures (Kelly, 2006). An estimate for the latency 

period between ischemia induction and seizure occurrence is between 2 to 4 weeks (Kelly, 

2006). The duration varies according to the seizure type; i.e. forelimb clonus lasts from 5 to 

20 seconds and forelimb clonus and rearing for about 1 minute (Kelly, 2006). There is one 

estimate of the seizure frequency in 20-month old rats of about one to two forelimb clonus 

and rearing-type seizures per week (Kelly, 2006).      

 

2.3.2 Seizures and epilepsy after cortical small vessel occlusion  

In the photothrombosis model, intravenously injected Rose Bengal dye is activated 

through the skull by a light to produce a cortical lesion in the desired location (Watson et al., 

1985). Although the occurrence of early seizures has not been described in the cortical 

photothrombosis model, the occurrence of late seizures has been studied in more detail. In 2-

month old rats, photothrombosis evoked late seizures in about 50% of the animals 

(Kharlamov et al., 2003). The duration of late seizures was reported to range from 2 to 3 
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seconds (Kharlamov et al., 2003). The most common behavioral change seen during a seizure 

was motor arrest (Kharlamov et al., 2003). Late seizures were observed as early as the first 

recording day, which was 26 days after the cortical lesion had been made with 

photothrombosis (Kharlamov et al., 2003). The latency time between photothrombosis and 

seizure, however, can also be greatly delayed, these workers observed seizures occurring 181 

days after the operation (Kharlamov et al., 2003). 

 

2.3.3 Seizures in other models of cerebral ischemia 

 In the focal cerebral ischemia model with embolus, a clot is introduced into an artery in 

which it traverses along and blocks the blood flow (Kudo et al., 1982). Early seizures are 

observed within 2 hours in about 20% of the rats with the embolization of the CCA (Kudo et 

al., 1982; Wang et al., 2001; Shuaib et al. 2002). Two days after the embolization in the rats, 

the occurrence of early seizures declines to 10% (Shuaib et al., 2002). The behavioral 

manifestations of seizures range from non-convulsive seizures to rearing and falling (Kudo et 

al., 1982; Wang et al., 2001; Shuaib et al., 2002).  

 In addition to that seen with focal brain ischemia, global ischemia can also induce early 

seizures. In Levine's model, hypoxia-ischemia is induced by temporary unilateral carotid 

artery ligation in combination with hypoxic ventilation (Krugers et al., 2000). Seizures occur 

in about 40% of the animals during the 24 hours after the operation (Krugers et al., 2000). 

These seizures have durations of less than 30 seconds (Krugers et al., 2000). The seizures are 

characterized by spinning around the body axis, jerking movements, and clonic contractions 

of the paws (Krugers et al., 2000). In the 2-vessel model of global brain ischemia, the 

occlusion of both common carotid arteries is combined with hypotension (Uchino et al., 

1996). Although no clinical signs of seizures are observed after 10 minutes of 2-vessel 

occlusion, electrographic seizures can be observed one hour after the recirculation in 86% of 

animals, after 3 hours in 57% of the animals and still after 16-18 hours in some animals 

(Uchino et al., 1996). In the 4-vessel model of global brain ischemia, electrocoagulation of 

vertebral arteries is combined with clamping of the carotid arteries 24 hours later (Moldovan 

et al., 2004). Following 3 or 10 minutes of ischemia, no clinical signs of seizure activity are 

observed (Moldovan et al., 2004). In contrast, after 30 minutes period of ischemia with the 4-

vessel occlusion, seizures can be detected in 20% of the rats at 24 hours and in 40% at 72 

hours (Ginsberg and Busto, 1998). 
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Global cerebral ischemia can be also produced with models that have been developed to 

study cardiac arrest. In these models, however, the seizures occur after various stimulations, 

usually not spontaneously (Siemkowicz and Hansen, 1978; Truong et al., 1994; Reid et al., 

1996). For example, in a chest compression model, about 3% of the rats develop seizures 

elicited by human presence, cage movement or other minor stimuli and 58% exhibit sound- 

induced seizures (Reid et al., 1996). Sound-induced seizures, however, seem to continue for at 

least up to 5 months after the chest compression (Reid et al., 1996).  

In addition to adult animals, the occurrence of seizures and epilepsy has been described 

in immature rats subjected to either focal or global cerebral ischemia. Recently, it was 

reported that injection of ET into the hippocampus results in the appearance of early seizures 

in 75-100% of the pups that are 12- to 25-days old at the time of ischemia induction 

(Mateffyova et al., 2006). Three months after the operation, non-convulsive seizures are 

observed in 63-100% of the rats (Mateffyova et al., 2006).  After Levine's model of hypoxia-

ischemia, 40% of the 7-day old rats develop spontaneous motor seizures (Williams et al., 

2004b). The mean latency time from the operation to spontaneous motor seizures is 194 days 

and the animals exhibit one seizure every 4 to 5 days (Williams et al., 2004b).  

To summarize, various focal and global cerebral ischemia models induce early seizures 

within the first two days (Uchino et al., 1996; Krugers et al., 2000; Shuaib et al. 2002; 

Moldovan et al., 2004). The development of epilepsy, however, has been described in far 

fewer models. In neonate rats, either a focal lesion in the hippocampus or global cerebral 

ischemia can induce epilepsy in later life (Williams et al., 2004b; Mateffyova et al., 2006).    

 

2.3.4 Behavioral recovery and seizures after brain insults 

Rats possess a great capacity to recover from a brain injury as assessed with various 

different behavioral tests (Corbett and Nurse, 1998). It has been suggested that seizures after 

brain insult may serve as an adaptive mechanism by which the brain tries to counteract the 

neural depression and to increase brain plasticity (Schallert et al., 1986; Witte and Freund, 

1999). Conversely, the hyperexcitability present after a brain insult may disturb the re-

establishment of normal function (Witte and Freund, 1999).  

Previously, the effect of seizures on the recovery after brain insult has been investigated 

with chemical convulsants and with electrical stimulation. When the gamma-aminobutyric 

acid (GABA) antagonist, pentylenetetrazol, is administered during the first 24 hours after 
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unilateral sensorimotor cortex lesions, rats recover significantly faster from the 

somatosensory and motor asymmetry than the saline-treated control group (Hernandez and 

Schallert, 1988). Similarly, rats receiving two electroconvulsive seizures within the first 24 

hours after the cortical lesion exhibit an accelerated recovery on the beam walking test 

(Feeney et al., 1987). However, when seven electroconvulsive seizures are applied, the treated 

group does not differ from the control group (Feeney et al., 1987). In an electrical kindling 

model, mild seizures from 2 to 6 days after the brain injury do not have any effect on the 

normal somatosensory recovery when the amygdala stimulation is started at 2 days 

(Hernandez and Warner, 1995). In contrast, when a more severe seizure occurs from 2 to 6 

days after the brain insult, a somatosensory deficit is still observable at 4 months (Hernandez 

and Warner, 1995). Importantly, recovery is unimpeded when severe seizures occur more than 

a week after the lesion induction (Hernandez and Warner, 1995). In summary, it seems that 

the recovery process may be vulnerable to seizures during a certain critical period after the 

initial insult in rats. Second, the severity and the number of the seizures during the critical 

period might influence the extent of the recovery.  

In addition to the effect of seizures, it is important to study whether administration of 

AEDs has any effect on the behavioral recovery after cerebral insults. A recent report 

describes that gabapentin treatment started 20 minutes after permanent MCAo reduces the 

number of seizures during the first post-operative day and the treatment is associated with a 

better neurological deficit score at 24 hours (Williams et al., 2006). In contrast, AED 

treatment with diazepam or phenobarbital hinders the recovery from asymmetry in a rat 

model of electrolytic unilateral lesion when treatment is started at 10 to 12 hours (Schallert et 

al., 1986). The asymmetry remains as severe as on the first post-operative day, even when the 

diazepam treatment is discontinued 22 days later and follow-up is carried out up to 3 months 

(Schallert et al., 1986). When diazepam treatment is postponed as long as 30 days after the 

lesion induction, a transient reinstatement of the asymmetry is observed in the majority of the 

animals during the first days of the treatment (Schallert et al., 1986). However, the asymmetry 

eventually disappears despite continuous drug treatment (Schallert et al., 1986). Taken 

together, there is evidence that AED treatment started hours after the brain insult might result 

in an impairment of recovery or a reinstatement of deficits. 
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2.4 Epileptogenesis-associated cerebral changes    

 An initial injury, such as a stroke, can trigger changes that alter the neural network and 

make it more prone to seizures. The process by which the normal brain is altered to a seizure- 

prone state is called “epileptogenesis”, and it can continue progressively from several weeks 

to even years after the initial insult (Mathern et al., 2002; Pitkänen et al., 2002). A variety of 

cerebral changes occur during epileptogenesis such as neuronal damage (Cavazos et al., 1994;  

Tuunanen et al., 1999; Mathern et al., 2002; Roch et al., 2002; Fabene et al., 2003), gliosis 

(Dawodu and Thom, 2005), axonal and dendritic sprouting (Salin et al., 1995; Buckmaster 

and Dudek, 1997; Ribak et al., 2000; Kato et al., 2001), alterations in the extracellular matrix 

(Perosa et al., 2002) and the induction of inflammation (Gahring et al., 1997; Vezzani et al., 

1999; Turrin and Rivest, 2004).  

 Seizure activity has been associated with damage in several brain structures such as the 

amygdala (Fujikawa, 1996; Tuunanen et al., 1999; Roch et al., 2002; Fabene et al., 2003), the 

entorhinal and piriform cortices (Fujikawa et al., 1996; Roch et al., 2002; Fabene et al., 2003), 

the striatum (Fujikawa et al., 1996; Dreifuss et al., 2001; Fabene et al., 2003), and the 

thalamus (Roch et al., 2002; Dreifuss et al., 2001; Fabene et al., 2003). Further, one typical 

finding both in human and experimental epilepsy is cell loss and gliosis in the hippocampus, 

which is termed “hippocampal sclerosis” (Cavazos et al., 1994; Buckmaster and Dudek, 1997; 

Mathern et al., 1997; Proper et al., 2000; Mathern et al., 2002). In hippocampal sclerosis, 

neurons in the hilus and CA3 region are especially vulnerable to damage, whereas CA2 and 

the dentate gyrus are better preserved (Mathern et al., 2002). In the hilus, there may be loss of 

both glutamatergic mossy cells and GABAergic interneurons (Buckmaster and Jongen-Relo, 

1999; Houser and Esclapez, 1996).  

 In addition to neuronal damage, neurogenesis has been associated with the network 

plasticity following seizures in adult rodents (Parent et al., 1997; Parent et al., 1998; Gray and 

Sundstrom, 1998). In the dentate gyrus, the majority of the newly born cells matures to 

neurons and resides at the base of the granule cell layer (Parent et al., 1997; Parent et al., 

1998; Gray and Sundstrom, 1998). Newly born cells can also appear in ectopic locations 

within the hilus or in the superficial parts of the granule cell layer and extend axonal 

processes to abnormal locations within the inner molecular layer (Parent et al., 1997). 

However, it was suggested recently that the connectivity of new neurons can develop in order 

to mitigate the dysfunction in the epileptic brain (Jakubs et al., 2006).    
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  Both axonal (Buckmaster and Dudek, 1997; El Bahh et al., 1999) and dendritic 

sprouting (Ribak et al., 2000; Kato et al., 2001) are also observed in association with seizures. 

Although the cortex and CA1 of the hippocampus can express axonal sprouting following 

seizures (Salin et al., 1995; Perez et al., 1996; Smith and Dudek, 2001), probably the most 

extensively studied form is mossy fiber sprouting in the dentate gyrus of the hippocampus. 

Normally, granule cell axons, i.e. mossy fibers, extend to hilar interneurons and the CA3 

pyramidal cells (Amaral and Witter, 1989; Amaral, 1993). Seizure activity and the subsequent 

cell death in the hilus, however, are associated with mossy fiber sprouting to the inner 

molecular layer of the dentate gyrus, where abnormally sprouted mossy fibers make synaptic 

contacts with dendrites of the neighboring granule cells and form recurrent excitatory circuits 

(Wuarin and Dudek, 1996; Buckmaster and Dudek, 1997; Proper et al., 2000).  

 However, the role of mossy fiber sprouting in seizure occurrence still needs to be 

clarified. Williams and co-workers (2002) have shown that the development of spontaneous 

seizures in the pilocarpine model can occur without detectable mossy fiber sprouting or 

hippocampal neuron loss. Further, mossy fiber sprouting can be observed without the 

presence of spontaneous seizures in a status epilepticus model where there is electrical 

stimulation of the amygdala (Nissinen et al., 2001). Aging can also result as in aberrant mossy 

fiber sprouting as demonstrated with Timm’s staining that locates the sprouting to the 

supragranular layer of the dentate gyrus (Cassell and Brown, 1984). Long-term potentiation 

induced with high-frequency electrical impulses to the perforant path in 10 consecutive days 

can also result as mossy fiber sprouting 7 days later (Adams et al., 1997). Lastly, although 

newly born neurons in the dentate gyrus can extend axonal processes to abnormal locations 

within the inner molecular layer, neurogenesis is not necessary for the development of 

aberrant mossy fiber sprouting after seizures (Parent et al., 1997; Parent et al., 1999).  

 

2.5 Cerebral changes and excitability after focal ischemia 

 Focal cerebral ischemia results usually in dying neurons within an ischemic core that is 

surrounded by a penumbral zone in which neurons have the potential to survive. In addition, 

glial cells accumulate at the lesion border, prominent inflammation is present and neuronal 

reorganization and dendritic sprouting occur (Watson et al., 1985; Stroemer et al., 1995; Nudo 

et al., 1996; Bidmon et al., 1997; Barone and Feuerstein, 1999; Biernaskie and Corbett, 2001).  
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 Around the lesion core, neither the average number of parvalbumin-labeled inhibitory 

interneurons nor the average number or the length of the dendritic processes arising from the 

labeled cells differ between control rats and ischemic rats with transient MCAo (Luhmann et 

al., 1995). Further, the expression of N-methyl-D-aspartate (NMDA) and alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors is decreased in the ischemic 

core and the penumbra at 24 hours and at 28 days (Jolkkonen et al., 2003; Sommer et al., 

2003). In electrophysiological recordings, GABAA receptor-mediated inhibition appears to be 

decreased in the peri-infarct zone at day 7, but not at day 28, following the transient MCAo 

(Neumann-Haefelin and Witte, 2000). A reduction in overall excitability is also observed in 

the peri-infarct region for at least 28 days (Neumann-Haefelin and Witte, 2000).  

 In contrast to a large artery occlusion, after the cortical photothrombosis the number of 

parvalbumin-positive inhibitory interneurons becomes decreased within the immediate 

vicinity of the lesion at 7 days (Neumann-Haefelin et al., 1998). In addition, the interneurons 

appear shrunken and they have a reduced number of dendrites as an indication of 

degeneration for up to 1 mm from the necrotic lesion border (Neumann-Haefelin et al., 1998). 

In the core of the photothrombotic lesion, the GABAA receptors are up-regulated (Que et al., 

1999b), but in the rim of the lesion they are down-regulated (Schiene et al., 1996; Que et al., 

1999b). Cortical photothrombosis has also been associated with changes in the GABA 

receptor subunit composition and the messenger-ribonucleic acid expression (Neumann-

Haefelin et al., 1998; Liu et al., 2002). NMDA-receptor expression, on the other hand, is 

increased in both hemispheres for at least 30 days after the photothrombosis, although the 

binding density of AMPA and kainate receptors does not seem to be altered (Que et al., 

1999a). Electrophysiological recordings show a markedly decreased inhibition in the neurons 

from cortical layers IV and V at a distance of 2 to 3 mm from the photothrombotic lesion 

border (Witte and Freund, 1999). Further, the resting potential is less negative in the cortical 

neurons 1.5 to 2.5 mm lateral from the lesion than in the control neurons (Witte and Freund, 

1999).  

In addition to the primary lesion site, after focal cerebral ischemia damage can be 

observed in the thalamus (Ruballa et al., 1998; Dihne et al., 2002) and the substantia nigra 

(Dihne and Block, 2001). In the hippocampus, the damage seems to be related to the method 

which is used to induce focal cerebral ischemia. Permanent MCAo with or without clamping 

both common carotid arteries or transient MCAo with systemic hypotension seems to provoke 
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neuronal damage in the hippocampus (Zhu et al., 1995; States et al., 1996). However, recent 

results seem to imply that following cortical photothrombosis, the hippocampus is spared 

from injury as shown by Nissl and Fluoro-Jade-B stainings (Kharlamov et al., 2007). Further, 

the number of hippocampal interneurons does not change at 7 and 30 days after 

photothrombosis, when cells expressing glutamic acid decarboxylase-65/67 mRNA are 

labeled (Frahm et al., 2004). However, NeuN immunoreactivity becomes reduced in the 

ipsilateral hippocampus at 1, 3, 7 and 180 days when compared to the contralateral side 

(Kharlamov et al., 2007). A cortical infarct can also alter the voltage dependence of the 

calcium current inactivation in both CA1 and CA3 regions and this may lead to a stronger 

excitability of the hippocampal network (Diehm et al., 2003). In addition to cell damage, 

neurogenesis can be observed in the subgranular zone of the dentate gyrus of the 

hippocampus and in the subventricular zone after both large artery occlusion and cortical 

photothrombosis (Arvidsson et al., 2002; Kluska et al., 2005).  
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3. AIMS OF THE STUDY  

 

 The present study aimed to investigate the occurrence of post-stroke epilepsy in rats. For 

this purpose, three established focal cerebral ischemia models were evaluated: the transient 

intraluminal filament model of middle cerebral artery occlusion (I, IV), the endothelin-1 

induced middle cerebral artery occlusion (II, IV) and cortical photothrombosis with Rose 

Bengal (III, IV). The aim was to answer the following questions:     

     

(1)  Is epileptogenesis associated with the type, size or location of the ischemic lesion?  

 

(2)  What are the characteristics of the late seizures occurring after focal cerebral ischemia?  

 

(3)  Does epileptogenesis associate with cell damage and mossy fiber sprouting in the 

hippocampus in the rats with focal cerebral ischemia?  

 

(4)  Does the occurrence of early seizures, increased spiking activity or 

 epileptogenesis associate with behavioral recovery as measured by sensorimotor testing, 

 the spatial learning and memory test, and the emotional learning and memory test after 

 focal cerebral ischemia? 
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4. MATERIAL AND METHODS 

4.1 Animals and housing conditions 

Male Sprague-Dawley rats weighed 275-315 g (I, II) or 310-380 g (III) at the time of 

ischemia induction. Altogether, 22 rats were used for the filament model of MCA occlusion 

(I; 9 sham and 13 ischemic); 47 rats for the ET-induced MCA occlusion (II; 12 shams and 35 

ischemic); and 51 rats for photothrombosis (III; 11 controls and 40 ischemic). In the 

photothrombosis model, an additional group of rats with lateral coordinates were prepared 

(n=6). The animals were single-housed in standard size cages in a humidity (50±10%) and 

temperature (21±1ºC) controlled environment with lights on from 7:00 to 19:00. Bottle water 

and pellet food were freely available for the rats. The procedures were approved by the 

Committee for the Welfare of Laboratory Animals of the University of Kuopio and the 

Provincial Government of Kuopio. All procedures were conducted in accordance with the 

European Community Council directives 86/609/EEC. 

 

4.2 Study designs 

 As summarized in the study designs (Figure 1), video-EEG was recorded to detect 

spontaneous seizures after experimental stroke with the filament model of MCAo (I), after 

ET-induced MCAo (II; 6 and 12 months follow-up groups) or photothrombosis (III; 2 

separate experiments from which Experiment 1 included only ischemic rats, and an additional 

group of rats with lateral coordinates). An additional aim was to investigate whether the 

severity of impairment in sensorimotor or learning and memory functions would differ 

between these rats with and without epilepsy. At the end of the studies, rats were perfused for 

histology to investigate the association between the brain damage severity and 

epileptogenesis. 

 

4.3. Anesthesia and peri- and postoperative health care 

Anesthesia with halothane (I, II). For the induction of MCAo with the ET and filament 

models, the rats were anesthetized in a plastic chamber containing a mixture of 5% halothane 

(Halothane, Rhodia Ltd, UK) in 30% oxygen and 70% nitrous oxide (Vaporizator Ohmer, 

BOC Ohmeda, Instrumentarium Oyj, Finland). When the animal was deeply anesthetized, it 

was removed from the chamber and connected to a nose mask. A surgical depth of anesthesia 

was maintained with 0.5-1% halothane. Air parameters of halothane, O2 and N2O were 
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monitored during the surgery (Capnomatic Ultima, Datex-Ohmeda, Instrumentarium Oyj, 

Finland). 

Anesthesia with an anesthesia cocktail (I, II, III). In the photothrombosis model and 

for electrode implantations, the rats were anesthetized with an intraperitoneal injection of a 

mixture (6 ml/kg) containing sodium pentobarbital (58 mg/kg), chloral hydrate (60 mg/kg), 

magnesium sulphate (127.2 mg/kg), propylene glycol (42.8%), and absolute ethanol (11.6%). 

Peri- and postoperative health care (I, II, III). During the filament model of MCAo (I) 

and ET-induced MCAo (II), the body temperature of the rat was monitored and maintained 

automatically at 37ºC using a temperature controller connected to a heating pad and a 

thermometer (Harvard Homeothermic Blanket Control Unit, 50-7061, Harvard Apparatus Ltd, 

UK). Local anesthetic cream (2 % Lidocaine hydrochloride, Orion, Finland) and local 

antibiotics (Bacibact powder, Orion, Finland) were spread on the edges of the surgical 

incisions (I, II, III). To prevent surgery-related weight loss and dehydration, rats were 

intraperitoneally injected with saline (5 ml, 0.9% NaCl) during the initial postoperative days 

(I, II). 

 

4.4. Experimental stroke models 
4.4.1 Intraluminal filament model of middle cerebral artery occlusion (I)  

 To induce MCAo with the intraluminal filament model (Longa et al., 1989), a 

halothane-anesthetized rat was placed in a supine position under a light microscope and an 

incision was made on the right side of the neck. The external carotid artery (ECA) was cut 

with microscissors and the intraluminal filament with a rounded tip (0.25 mm in diameter, 

soaked in heparin) was introduced into the lumen of the ECA stump and advanced into the 

ICA until the rounded tip blocked the bifurcation of the MCA. This was ensured by advancing 

the intraluminal filament until the marking on the filament was reached (1.9-2.2 mm from the 

rounded tip of filament) and/or a slight resistance was felt. The animal remained deeply 

anesthetized during the 120 min of MCAo. At the end of the occlusion time, the intraluminal 

filament was removed, the stump of the ECA was electrocoagulated and the blood flow was 

restored. In the sham-operation, the CCA was exposed and the ECA was cut and 

electrocoagulated, but the intraluminal filament was not introduced into the lumen of the 

artery.  
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Figure 1. Flow charts represent study designs for video-EEG recordings and 
behavioral tests for the studies with the intraluminal filament model of middle cerebral 
artery occlusion (Filament), the ET-induced middle cerebral artery occlusion 
(Endothelin-1) and cortical photothrombosis (Photothrombosis). The dashed line 
indicates the additional group of photothrombotic rats with a lateral lesion and the 
grey line refers to behavioral tests. Abbreviations: BW, beam walking test; FC, fear 
conditioning test; LP, limb placing test; RW, running wheel test; vEEG, video-EEG; 
WM, water maze test. 
 

4.4.2 Endothelin-1 induced middle cerebral artery occlusion (II) 

 For the ET-induced MCAo, a halothane-anesthetized rat was placed into a stereotaxic 

frame in the flat skull position (Kopf, USA; incisor bar 3.3 mm below zero according to the 

brain atlas of the rat by Paxinos and Watson, 1997; Biernaskie and Corbett, 2001). An 

incision was made in the midline of the head and the place of the bregma was identified with 

a light microscope. A hole was drilled into the skull overlying the site of ET-injection (0.9 

mm anterior and 5.2 mm lateral to bregma; 8.7 mm below dura) and a small opening was 

made into the dura with a needle. Thereafter, 6 µl (120 pmol) of ET solution (20 pmol/µl in 

0.9% NaCl; endothelin-1, Sigma-Aldrich Chemie GmbH, Germany) was injected 

stereotactically with a 10 µl syringe (Microliter Syringes, Hamilton Bonaduz AG, UK) to the 

proximal portion of the MCA over a period of 2 minutes. To minimize the backflow, the 
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needle was left in place for 5 minutes before it was slowly withdrawn. The sham operation 

included all of these procedures but injection of 0.9% NaCl was made instead of ET. 

 

4.4.3 Cortical photothrombosis with Rose Bengal (III) 

  For the induction of the cortical photothrombosis, a pentobarbital-anesthetized rat was 

placed into a stereotaxic frame in the flat skull position (Watson et al., 1985; Zhao et al., 

2005). An incision was made in the midline of the head and the place of the bregma was 

identified with a light microscope. Rose Bengal (20 mg/kg; 20 mg/ml; Sigma Aldrich 

Chemie, Germany) was infused into the femoral (Experiment 1) or saphenous vein 

(Experiment 2) at a speed of 150 µl/min. The center of the light beam (4 mm in diameter; 

Olympus, Denmark) was focused 1.8 mm posterior and 2.2 mm lateral to the bregma. A more 

lateral lesion was utilized in an additional group of animals with coordinates 0.5 mm posterior 

and 3.7 mm lateral. Photoactivation was performed during 10 min simultaneously cooling the 

skull surface with air. Two control groups were prepared, but their results were combined for 

the analysis. One group of controls was treated similarly with photothrombosis except that the 

light was not turned on and thus, the photoactivation leading to ischemia was not performed. 

The second control group underwent only the electrode implantation. 

 

4.5. EEG recordings 

4.5.1 Electrode implantation and EEG monitoring schedule 

 Following filament model of MCAo (I). Ten weeks after MCAo with the filament, two 

stainless steel screw electrodes (Plastics One Inc., USA) were inserted into the skull above the 

somatosensory cortex (3 mm posterior and 2 mm lateral from the bregma). Two screws 

positioned over the cerebellum served as indifferent and ground electrodes (10.3 mm 

posterior and 2 mm lateral). The electrode wires were connected to the plastic pedestal 

(Plastics One Inc., USA), and the headset was fixed with dental acrylic (Selectaplus CN, 

Dentsply DeTrey GmbH, Germany). The video-EEG was recorded continuously for 1 week at 

time points 3, 7, and 12 months after the MCAo or the sham-operation (Nervus EEG 

Recording System, Iceland or Stellate EEG Monitor System, Canada).  

Following ET-induced MCAo (II). In the 6-month follow-up group, electrodes were 

implanted in the same session with the sham-operation or the ischemia induction with ET. In 

the 12-month follow-up group, electrodes were implanted 1 month before the video-EEG 
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monitoring (11 months after experimental stroke). In addition to two recording electrodes 

above the primary somatosensory cortex (3 mm posterior and 2 mm lateral) and an indifferent 

and a ground electrode above the cerebellum (10.3 mm posterior and 2 mm lateral), a hand 

made bipolar electrode was lowered into the ipsilateral hippocampus (two nylon insulated 

wires, 0.127 mm in diameter, soldered to a gold pin, Franco Corradi, Italy; 6.0 mm posterior 

and 4.6 mm lateral and 7.0 mm below the skull). The 6-month follow-up group was 

continuously monitored for the first 2 hours after the operation, and at 2, 4, and 6 months (2 

weeks at a time, 24 hours/day). In the 12-month follow-up group, cortical and hippocampal 

electrodes were implanted at 11 months after operation and the video-EEG was recorded for 2 

weeks at 12 months.  

Following cortical photothrombosis (III). Electrodes were implanted immediately after 

the photothrombosis. In the additional group of rats with a lateral lesion, electrodes were 

attached one week before the first video-recording session (on post-ischemic week 27). The 

recording electrodes were implanted into the ipsilateral cortex (3 mm posterior and 2 mm 

lateral) and hippocampus (6.0 mm posterior and 4.6 mm lateral and 7.0 mm below the skull). 

Indifferent and ground electrodes were positioned over the cerebellum (10.3 mm posterior 

and 2 mm lateral). The video-EEG was recorded continuously for 7 or 10 days at 2, 4 and 10 

months in Experiment 1. In Experiment 2, the photothrombotic and control group were 

recorded continuously with video-EEG for 7 or 14 days at 2, 4, 6, 8 and 10 months after the 

operation. The additional group of photothrombotic rats with a lateral lesion location was 

recorded for 14 days at 8 and 10 months after ischemia induction.  

 

4.5.2 EEG equipment 

EEG was collected using the recording system with an amplifier as described elsewhere 

(Nissinen et al., 2000; Nervus magnus 32/8 Amplifier; Nervus 2.4 or 3.0 software, 

Taugagreining, Iceland or Stellate EEG Monitor System, Canada). The behavior of the 

animals was recorded using a video camera (WV-BP330/GE, Panasonic) that was positioned 

above the cages and connected to a time lapse VCR (SVT-N72P, Sony). An infrared light 

(WFL-II/LED15W, Videor Technical GmbH, Germany) was used at night to allow visibility 

continuously for 24 hours/day.  
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4.5.3 Analysis of EEG 

 Seizures (I, II, III). The occurrence of spontaneous seizures was based on the visual 

analysis of digitized EEG on a computer screen. A paroxysmal discharge with rhythmic, 

repetitive waveforms that lasted at least 5 seconds, had a clear onset and offset and temporal 

evolution in amplitude and frequency was considered as an electrographic seizure. The 

number of seizures and their duration was assessed and the occurrence of spontaneous 

seizures per recording day was calculated. 

When electrographic seizure activity was observed, then the severity of the behavioral 

seizure was classified from time-locked video recordings according to a modified Racine’s 

scoring scale (Racine, 1972): 0, electrographic seizure without any detectable motor 

manifestation; 1, mouth and face clonus, head nodding; 2, clonic jerk of one forelimb; 3, 

bilateral forelimb clonus; 4, forelimb clonus and rearing; and 5, forelimb clonus with rearing 

and falling.  

The term "early seizure" was used for electrographic seizures that were detected within 

2 weeks after the ischemia induction. Electrographic seizures that occurred after the 2 week 

time point were called "late seizures". Late seizures were considered as spontaneous seizures 

representing the outcome of epileptogenesis, i.e. epilepsy.  

 Spikes (II). Spike analysis was performed at 2, 4, 6 (6-months follow-up group), and 12 

(12-months follow-up group) months after ET-induced MCAo. At each time-point, a 24-hour 

artifact-free EEG from the beginning of each 2-week monitoring period was selected for the 

analysis. The entire 24-hour hippocampal EEG was transformed to the one channel European 

data format and processed with the Clampfit-program (version 9.0.1.07, Axon Instruments 

Inc., USA). The EEG was visually inspected on the computer screen to detect movement-

related and other artifacts and an artifact-free portion of hippocampal EEG was used for the 

analysis. Spiking was considered pathologic when it was >2SDs (standard deviations) above 

the mean of sham animals.  

 

4.6. Behavioral tests 

4.6.1 Sensorimotor tests 

The limb-placing test (I). To confirm the successful MCAo with filament, the limb-

placing test was performed at 2 days. The limb placing test consisted of seven tasks, which 

were scored from 0 to 2 points according to the performance of the rat: 0 point, the rat did not 
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perform normally; 1 point, the rat performed with a delay of more than 2 seconds and/or 

incompletely; and 2 points, the rat performed normally (Jolkkonen et al., 2000). Both sides of 

the body were tested. The maximum possible score achieved by the sham-operated rats was 

14. Only ischemic rats with a score of 10 or lower were included in this study.  

The running wheel test (I, II). The running wheel test was used to detect sensorimotor 

impairment in the forelimb function. The running wheel test was performed at 7 and 12 

months after the filament model of MCAo and at 2 days, 2 weeks, 4 weeks, 2 months, 4 

months and 6 months after ET-induced MCAo. The running wheel (29 cm in diameter; steps 

2.5 cm apart; transparent, plastic sides) was rotated by a motor at a speed of 4 rpm for 150 

seconds. Rats were trained in the wheel on three consecutive days before ischemia induction. 

The performance of the rats in the wheel was video-recorded for later slow-motion analysis of 

the slips and the steps taken with the forelimbs (Jolkkonen et al., 2000). The slip ratio 

(number of slips/number of steps taken) was calculated and used for statistical analysis of 

sensorimotor performance.  

The tapered beam-walking test (II, III). The tapered beam walking test was used to 

detect sensorimotor impairment of the hindlimb function and it was performed 2 days, 2 

weeks, 4 weeks, 2 months, 4 months and 6 months after ET-induced MCAo and 2 days after 

the cortical photothrombosis. The beam (length 140 cm) was 40 cm above the floor and it was 

placed along the wall equipped with a mirror to help in the detection of the limb movements. 

The horizontal surface of the beam narrowed from 6.0 cm at the start to 1.5 cm at the end. A 

1.5-cm wide horizontal lower level ran on both sides of the beam. A bright light (100 W; 30 

cm above the beam) illuminated the beginning of the beam and motivated the rat to escape 

from the beam into a black box (20.5 cm x 25 cm x 25 cm), which was located at the narrow 

end of the beam. Rats were trained on three consecutive days (three trials each day) before 

ischemia induction. The performance of the rat on the beam was video-recorded for slow-

motion analysis. The numbers of steps on the upper level, slips to the vertical surface of the 

beam, and slips to the lower level were counted for the hindlimbs. The score for each trial was 

presented as follows (Schallert and Woodlee, 2005): [(vertical slips * 0.5 + lower level 

slips)/(upper level steps + vertical slips + lower level slips)] * 100%.  
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4.6.2 Learning and memory tests  

The water maze (I, II, III). The water maze test was used to investigate impairment in 

spatial learning and memory of the animals 7 and 12 months after the filament model of 

MCAo, 6 or 12 months after ET-induced MCAo and 10 months after cortical 

photothrombosis as described before (Puurunen et al., 2001). The testing system was 

composed of a black pool (150 cm in diameter) that was filled with water (temperature 

20±2°C) and surrounded with visual cues (posters and lights). A black square platform (10 x 

10 cm) was located 25 cm from the pool rim and 1.5 cm below the water surface. The 

swimming pattern of a rat was recorded using a video camera that was positioned directly 

above the pool and connected to a computerized image analysis system (HVS image, Imaging 

Research Inc., UK). The test was carried out on 3 consecutive days (5 trials per day). The 

starting position was changed after each trial. The rat was allowed to swim for 70 seconds to 

find the platform. When the rat failed to find the hidden platform within 70 seconds, it was 

guided to the platform. After each trial, the rat was allowed to remain on the platform for 10 

seconds and thereafter, it rested in a cage for 30 seconds or 1 minute. On the third testing day, 

the sixth trial was done without the platform (the probe trial).  

The fear conditioning test (II, III). To investigate emotional learning and memory of 

the rats, the fear conditioning test was carried out 7 months or 13 months after ET-induced 

MCAo and 11 months after cortical photothrombosis as described before (Narkilahti et al., 

2003). On the first day, a rat was habituated to the fear-conditioning box without a tone or 

foot shock for 20 minutes. On the second day, a tone (20 seconds, 10 kHz and 75 dB) was 

combined with an electric foot shock that was delivered at the end of the tone (0.5 seconds, 

0.5 mA; San Diego Instruments Incorporated, SD Instruments). The association of a tone and 

foot shock was repeated twice. The time between stimuli varied randomly from 1 to 5 

minutes. On the third day, the protocol from day 2 was repeated. On the fourth day, the test 

was performed in a novel environment (a novel box in a novel room, and a novel odor was 

used for cleaning). The rat was placed into the box for 2 minutes and then a tone was 

introduced for 3 minutes. Freezing time was defined as the time the rat spent immobile (only 

respiratory-related movements observed). The duration of freezing was assessed by viewing 

videotapes. Freezing during the 20-second period immediately preceding the onset of the tone 

was used as a measure of contextual fear conditioning. Freezing during the 20-second 

delivery of the tone was used as a measure of cued fear conditioning.  
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4.7. Histology 

4.7.1. Tissue processing 

After the filament model of MCAo, the ventral part of the right hippocampus was 

frozen on dry ice and stored at −80 ºC for histological procedures at the end of the 12-month 

follow-up (I).   

Six or 12 months after ET-induced MCAo (II) and 10 months after photothrombosis 

(III), rats were deeply anesthetized with an intraperitoneal injection of the anesthesia cocktail 

and transcardially perfused using Timm’s sulphide method (Sloviter, 1982). Briefly, rats were 

perfused with buffered sulphide solution (10 min, 30 ml/min) followed by 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4; 10 min, 30 ml/min). The brains were 

removed from the skull and postfixed in buffered 4% paraformaldehyde solution (4 h in ice 

bath). Then the brains were cryoprotected with 20% glycerol in 0.02 M potassium phosphate 

buffer (24 h at -4ºC), frozen in dry ice and stored at -70ºC until further processing. Coronal 

sections (30 µm thick) were cut from the frozen brains with a sliding microtome (1-in-5 

series). The first series of sections was stored in buffered 10% formalin solution at room 

temperature. The rest of the sections were stored in tissue collection solution at -20ºC (30% 

ethylene glycol and 25% glycerine in 0.05 M phosphate buffer).  

 

4.7.2. Thionin staining 

The first series of sections was stained with thionin to determine the infarct size and 

depth (II, III), to assess the severity of neuronal damage in the hippocampus (II, III), and to 

confirm the placement of the hippocampal electrode (II, III).  

Lesion volume (II). For lesion volume analysis after ET-induced MCAo, digitized 

images of sections spaced 600 µm apart were captured and depicted on a computer screen 

(Swanson et al., 1990). The hemispheres were manually outlined in each section and 

surviving tissue with optical densities above the threshold value was recognized and measured 

automatically by the image analysis program (MCID, Imaging Research Inc., Canada). To 

calculate the area of lesion in each section, the area of the surviving tissue of the ipsilateral 

hemisphere was subtracted from that of the contralateral hemisphere. The mean infarct area 

was calculated and multiplied by 0.6 (section interval), and the volumes were summed 

together to obtain a total infarct volume.  
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Severity of neuronal damage in the hippocampus (II). Thionin-stained sections were 

also used for semiquantitative analysis of the severity of neuronal damage in the granule cell 

layer, hilus, CA3 (c, b and a subfields) and CA1 subregions of the ipsilateral and contralateral 

hippocampus after ET-induced MCAo. The analysis was started in the section in which the 

suprapyramidal and infrapyramidal blades of the septal dentate gyrus fused together and 

continued through the entire septotemporal extent of the hippocampus.  The severity of 

neuronal damage was scored as follows: 0, no damage; 1, damage involves less than 20% of 

neurons; 2, damage involves 20-50% of neurons; and 3, damage involves more than 50% of 

neurons in the area of interest (Pitkänen et al., 1996).  

Hilar cell countings (III). After photothrombosis, damage to the hippocampal hilar 

neurons was assessed using a stereological approach with the optical fractionator method 

using Stereo Investigator software (MicroBrightField Inc., USA) as described before 

(Pitkänen et al., 2002; West et al., 1991). Briefly, a color video camera (Hitachi HV-C20) 

interfaced with the microscope (Olympus BX50) was used to view digitized sections on the 

monitor. Neuroanatomical borders of the hilus were outlined on the screen and subsequent 

counting of the cells was performed within these borders. The motorized stage of the 

microscope was under the control of the computer. The hilar fields in every section were 

surveyed at evenly-spaced 70 x 70 µm intervals using a counting frame of 20 x 20 µm. 

Counting was performed in a 1-in-15 series of systematically sampled sections throughout the 

hippocampus as described previously (West et al., 1991). 

 

4.7.3. Timm’s staining 

One series of sections was stained with Timm’s staining for native tissue (I; Jolkkonen 

et al., 1997) or Timm's staining for sulphide-perfused tissue (II, III; Sloviter, 1982; Narkilahti 

et al., 2003) to investigate the sprouting of mossy fibers in the dentate gyrus of the 

hippocampus. The analysis was performed throughout the hippocampus including septal and 

temporal-dorsal and temporal-ventral portions (Narkilahti et al., 2003). The rating was based 

on the density of Timm’s granules in the supragranular region and in the inner molecular 

layer of the dentate gyrus as follows: 0, no granules; 1, sparse granules; 2, granules evenly 

distributed; 3, almost a continuous band of granules; 4, a continuous band of granules; and 5, 

a confluent and dense laminar band of granules (Cavazos et al., 1991).  
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4.8 Statistical analysis 

 All statistical analyses were performed with SPSS software for Windows (SPSS Inc., 

USA). Non-parametric tests were used because data were not normally distributed and the 

number of cases was low. Analysis of variance for repeated measures was carried out when a 

behavioral test was repeated. A p-value of less than 0.05 was considered to be statistically 

significant.  
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5. RESULTS  

5.1 Mortality and exclusions 

 Filament model of MCAo (I). Altogether, two ischemic rats from 13 were excluded 

after filament-induced MCAo. One rat was excluded because it did not exhibit a sufficiently 

severe sensorimotor deficit in the limb-placing test and the other was omitted because of 

infection. Six rats died during the 12-month follow-up period. Thus, five ischemic rats with a 

12-month follow-up were available.  

ET-induced MCAo (II). Of 47 operated rats, one sham-operated rat died due to 

hemorrhage during the first EEG-recording; 1 ET-injected animal died during the replacement 

of a headset for EEG recordings and 5 rats had to be killed during the follow-up (4 shams, 1 

ET-injected). Histologic analysis revealed no measurable infarct in 7 of the 35 ET-injected 

rats, and these animals were excluded from the analysis. Thus, 11 rats (3 shams and 8 ET-

injected) were included in the 6-mo follow-up group and 22 (4 shams and 18 ET-injected) in 

the 12-mo follow-up group.  

 Cortical photothrombosis (III). Cortical photothrombosis was induced in 40 rats of 

which one rat died during the ischemia induction and two during the experiment. Two rats 

were excluded because of a poor EEG and one rat because no confirmable lesion could be 

detected histologically. The headset fell off from one rat before the 2-month recording, from 

one rat before the 4-month and from 5 rats before the 10-month video-EEG recording 

sessions. The headset was reimplanted in 2 rats before the 6-month video-EEG recording 

period. Thus, altogether 36 ischemic rats were available for the EEG analysis (16 ischemic 

rats in Experiment 1 and 20 ischemic rats in Experiment 2; 11 controls). In addition, one 

ischemic rat was excluded from the mossy fiber analysis and hilar cell counting because its 

hippocampus was deformed.  

   

5.2. EEG recordings  

5.2.1 Early seizures 

 Early seizure occurrence was not investigated after the filament model of MCAo (I) or 

after cortical photothrombosis (III). After ET-induced MCAo (II), non-convulsive, 

electrographic seizures were observed in 7 out of 8 ET-injected rats (88%) within 2 h after 

surgery. The seizures appeared, on average, 50 minutes after ET injection. The mean seizure 

frequency was 0.79 seizures per hour and the mean seizure duration was 76 seconds. The 
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sham-operated rats (3 out of 8, 38%) also exhibited early seizures and one of them died 

during the recording. The mean seizure frequency for the two surviving shams was 0.75 

seizures per hour with a mean duration of 95 seconds. The rat which died had 2.6 seizures per 

hour, spent a total of 25 minutes in seizure activity, and eventually died while still in seizures 

at 3 hours 55 minutes after the saline-injection.  

 

5.2.2 Late seizures  

 Late seizures were considered as spontaneous seizures representing the outcome of 

epileptogenesis, i.e. epilepsy. No spontaneous late seizures were detected during the 

intermittent video-EEG recordings, which were arranged up to 12 months after the filament 

model of MCA occlusion (I; Table 3).  

 Following ET-induced MCAo, one rat developed epilepsy 6 months after the ischemia 

induction (6 months follow-up group; II; Table 3). The seizure frequency for that rat was 0.21 

seizures per recording day with a mean seizure duration of 113 seconds (range from 78 to 174 

seconds). Behaviorally, the seizures ranged from bilateral forelimb clonus to rearing and 

falling (scores 3 and 5).  

 Following cortical photothrombosis, 18% of the rats exhibited electrographic seizures 

(III; Table 3). The mean seizure frequency was 0.39 seizures per recording day and mean 

seizure duration was 117 seconds (range from 36 to 358 seconds). Electrographic seizures 

were accompanied by bilateral forelimb clonus, rearing, or rearing and falling (scores 3, 4 or 

5). The latency time from photothrombosis to the first seizure varied from 71 to 297 days. No 

electrographic seizures were detected in the rats with the control treatment. Further, none of 

the rats in the additional photothrombotic group with a lateral lesion location developed 

seizures.   

 

5.2.3 Spikes 

 After ET-induced MCAo, the mean hippocampal spike frequency did not differ between 

sham and ischemic group at 2, 4, or 6 mo, but at the 12-mo recording, the ET group had a 

higher mean spike frequency than the sham group (p<0.05; II). The infarct volume correlated 

with the spiking frequency at 12 mo (p<0.01, r=0.540), i.e. those rats with larger lesions 

exhibited a higher spiking frequency at 12 mo. No increase in spiking frequency was 

observed in sham-operated rats.  
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Table 3. Summary of results from the studies using the filament model of MCAo, ET-
induced MCAo and cortical photothrombosis. 
 
  

Filament model of MCAo 
 

 

ET model of MCAo 
 

 

Cortical photothrombosis 
 

    

Seizure characteristics    
Number of rats with epilepsy  

 
0/5 (0%) 1/26 (4%) 7/36 (18%) 

Latency time from ischemia 
to seizures (d) 

 

- 192 71-297 

Seizure score 
 

- 3 or 5 3-5 
Mean seizure frequency 
(seizures/recording day) 

 

- 0.21 0.39 

Mean seizure duration (s) - 113  117 
    
Histology in rats with 
seizures 

   

Hippocampal cell damage 
 

- no¤ no 
Aberrant mossy fiber 

sprouting 
no no¤ yes 

    
Behavioral impairment 
after focal ischemia 

   

Morris' water maze 
 

yes No yes 
Fear conditioning 

 
- No no 

Sensorimotor tests acute: yes 
chronic: yes 

acute: yes 
chronic: no 

acute: yes 
chronic: - 

    

Abbreviations: -, data not obtained; ¤, statistical analysis could not be carried out; Seizure score, 
severity of behavioral seizures scored from 0 to 5 according to Racine (Racine, 1972). 
 
 
5.3 Behavioral deficits 

5.3.1 After ischemia 

The rats subjected to the filament model of MCAo slipped more than shams in the 

running wheel after 7 and 12 months (p<0.05; I; Table 3). Further, MCA occluded animals 

had a longer escape latency (at 7 months p<0.01 and at 12 months p<0.001) and path length 

(at 7 months p<0.001 and at 12 months p<0.001) in the water maze than their sham-operated 

counterparts.  

The rats subjected to ET-induced MCAo slipped more than the shams in the running 

wheel after 2 days (p<0.01), but no difference was found between ischemic and sham rats in 

the beam walking test (II; Table 3). In addition, ET-injected rats performed as well as the 

sham-operated in the water maze and fear conditioning tests.  

Rats with photothrombosis slipped more on the beam than the control group after 2 days 

(p<0.05) and spent more time trying to find the platform in the water maze test when this was 
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assessed at 10 months (p<0.05) compared to the control group (III; Table 3). However, 

photothrombotic rats and control rats performed similarly in the fear conditioning test.  

 

5.3.2 After seizures and spiking 

The behavioral data could not be compared between rats with and without seizures after 

the filament model of MCAo, because none of the rats developed seizures during the follow-

up. After ET-induced MCAo, the existence of early seizures or increased spiking did not 

influence the performance in the running wheel or on the beam (II). Unfortunately, no 

comparison between rats with and without late seizures was possible after ET-induced MCAo 

and photothrombosis, due to the low number of rats in the groups (II, III).  

 

5.4. Histology 

5.4.1 Lesion volume and depth 

Following the ET-induced MCAo (II), lesions were detected in both parietal and 

temporal cortical regions and striatum. The mean lesion volume in ET-injected rats was 32 ± 

22 mm3 (range from 3 to 76 mm3). The ET-injected rat with late seizures had a lesion volume 

of 10 mm3. After photothrombosis (III), the lesion depth varied from layer I to VI both in 

epileptic and non-epileptic rats.  

 

5.4.2 Neuronal damage in the hippocampus  

 Following the ET-induced MCAo, semiquantitative analysis of neuronal densities in the 

hippocampus did not reveal any neuronal loss outside the electrode tract (II; Table 3). 

Similarly, the estimation of hilar cell number did not reveal any massive loss of hilar neurons 

following cortical lesioning with photothrombosis (III; Table 3).  

 

5.4.3 Effect of ischemia and age on mossy fiber sprouting  

Following the filament model of MCAo, Timm’s staining did not reveal any aberrant 

mossy fiber sprouting in the hippocampus (I). Similarly, the mean Timm’s score did not differ 

between sham rats and rats with ET-induced MCAo (II). At 12 mo, however, rats with ET-

induced MCAo had a slightly higher total mean Timm’s score than ischemic rats at 6 mo 

(p<0.05; II). Furthermore, the mean Timm’s score did not differ between non-epileptic 

photothrombotic rats and control rats (III).  
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5.4.4 Effect of seizures on mossy fiber sprouting  

None of the rats with filament induced MCAo developed epilepsy (I). Interestingly, 

after ET-induced MCAo, sprouting of mossy fibers was not detected in the epileptic rat (II; 

Table 3). In contrast, after photothrombosis, the epileptic rats had slightly denser ipsi- and 

contralateral mossy fiber sprouting when compared to the situation in the control rats or 

photothrombotic non-epileptic rats (p<0.05; III; Table 3).  
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6 DISCUSSION  

6.1 Methodological considerations  

 Experimental groups. Focal cerebral ischemia was induced in rats using three different 

methods to study the occurrence of post-stroke epilepsy in the animals. Two of the 

techniques, the filament model and the ET-model resulted in occlusion of MCA. The results 

suggested that the percentage of young rats developing seizures is low after the large MCA 

territory infarct, which is consistent with the results of a previous study (Kelly et al., 2006). In 

contrast, a small cortical lesion induced epileptic seizures in 18% of the rats. Previously, it has 

been shown that up to 50% of the rats can develop epilepsy after cortical photothrombosis 

(Kharlamov et al., 2003). The difference might relate to different lesion size due to the dose of 

Rose Bengal dye, the diameter of the light beam, and the duration of illumination. Further, in 

the present study, electrical discharges shorter than 5 s were not counted as seizures. 

Detection of seizures was also based on the ipsilaterally placed hippocampal depth electrode 

and the contralateral cortical electrode and thus, short lasting and local discharges around the 

lesion may have gone unnoticed. 

 Stroke models. Focal cerebral ischemia models were selected for the present study, 

because they are believed to be relevant for modeling human stroke (Ginsberg and Busto, 

1998). In particular, transient MCAo models are of special interest, because in humans the 

MCA is often affected by occlusion and is usually accompanied by recanalization (Saito et al., 

1987). The intraluminal filament model represents probably one of the most extensively used 

stroke model that has relevance to the clinical condition of the MCAo (Ginsberg and Busto, 

1998). The ET-induced MCAo produces an artery spasm achieved by stereotactic injection of 

a vasoconstricting peptide (Biernaskie and Corbett, 2001) whereas the cortical 

photothrombosis with Rose Bengal produces thrombotic occlusion of small cortical vessels 

(Watson et al., 1985).  

 Although stroke can occur in any age group, it is most often observed after 60 years of 

age (Giroud et al., 1998). Most of the experimental studies, however, use young adult rats 

aged 2 to 3 months at the time of ischemia induction. Aged rats are expensive to purchase and 

they have increased mortality after surgical procedures meaning that a relatively large number 

of animals need to be operated to obtain a relevant study groups.  

 Video-EEG recordings. Long-term video-EEG recordings were performed to detect 

seizures after focal cerebral ischemia. EEG monitoring is important, especially during the 
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acute phase after the experimental stroke, because seizures are typically non-convulsive 

(Williams et al., 2004a; Williams et al., 2006). Further, the latency time between ischemic 

insult and the appearance of the first late seizure can vary from days to months (Kharlamov et 

al., 2003) and thus, intensive long-term monitoring is necessary.  

Previously it was suggested that chronic implantation of an electrode into the amygdala 

could be sufficient to evoke epileptiform changes in hippocampal electrical activity 

(Niespodziany et al., 1999). In the present experiment, both skull electrodes and 

intrahippocampal electrodes were used in the rats with ET-induced MCAo or with the cortical 

photothrombosis. Importantly, no late seizures were detected in control treated animals that 

underwent also the implantation of the depth and cortical electrodes. 

 

6.2 Comparison between human and experimental post-stroke epilepsy  

 The present experiment was aimed to study the development of epilepsy after stroke 

using three established techniques to induce focal cerebral ischemia. No seizures were 

observed after the intraluminal filament model of MCAo. After the ET-induced MCAo, 1 rat 

of 26 exhibited late seizures. Further, the cortical photothrombosis induced seizures in 7 rats 

of 36. Seizure frequency varied from 0.21 to 0.39 seizures per recording day in those rats 

developing seizures in the ET-model and in the cortical photothrombosis, respectively. In 

humans, stroke can be highly variable in size and location and from 3% to 14% of the patients 

experience late seizures (Gupta et al., 1988; Ryglewicz et al., 1990; Kotila and Waltimo, 

1992; So et al., 1996; Bladin et al., 2000; Dhanuka et al., 2001). Seizure frequency can range 

from one to two seizures per month (Ryglewicz et al., 1990).  

 

6.2.1 Electrophysiological findings 

At acute time points after human stroke, the EEG can detect four times more seizures 

than can be seen clinically (Vespa et al., 2003). In agreement, non-convulsive seizures were 

observed in 7 out of 8 rats with ET-induced MCAo within 2 h after the ischemia induction. 

The occurrence of early seizures was not monitored after the filament model of MCAo and 

cortical photothrombosis. It remains to be investigated whether the physiological variables 

during and after the induction of focal cerebral ischemia can contribute to the occurrence of 

early seizures after the focal cerebral ischemia.  
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Seizures after stroke are thought to be partial with or without generalization (Silverman 

et al., 2002). Recently, it was also shown that in humans the median duration of secondarily 

generalized tonic clonic seizures is 130 seconds (Jenssen et al., 2006). In the present study, all 

observed late seizures were secondarily generalized, ranging from bilateral forelimb clonus to 

rearing and falling (behavioral seizure scores from 3 to 5) and the seizure duration varied 

from 36 to 358 seconds.  

It has been suggested that in humans, seizures arise from the perilesional cortex (Witte 

and Freund, 1999; Cosgrove, 2001). Previously, it was shown in experimental models that 

during the early phase after MCAo with the filament, early seizures were initiated in the 

ischemic hemisphere and then spread bilaterally to all cortical regions as demonstrated with 

10 electrodes covering bilaterally frontal, parietal, occipital and temporal areas (Williams and 

Tortella, 2002; Hartings et al., 2003). Similar kinds of findings have been obtained from the 

photothrombosis model at later time points (Kelly et al., 2001).  

In humans, ictal EEG recordings are rarely obtained during routine epilepsy assessment. 

However, interictal epileptiform discharges, i.e. spikes can be used to support a diagnosis of 

an epileptic disorder and to localize the epileptogenic foci. In the present study, increased 

spiking activity was observed at 12 months after ET-induced MCAo, but not in the age-

matched sham-treated animals. These results suggest that although late seizures occur rarely, 

excitability might be increased during the long term follow-up of the ischemic animals with 

ET-induced MCAo.  

 

6.2.2 Lesion size, location and depth 

 In humans, a large lesion size on computed tomography correlates with the occurrence 

of seizures and epilepsy (Gupta et al., 1988; Ryglewicz et al., 1990; Bladin et al., 2000). 

Furthermore, an anterior location in the MCA territory seems to be associated with 

development of seizures and epilepsy (Burn et al., 1997; Lamy et al., 2003). In contrast to the 

human data, the results from the present and previous experimental studies imply that the 

large infarcts in the MCA territory rarely induce seizures in rats, whereas the development of 

epilepsy is observed more often after small cortical photothrombotic lesions (Kelly et al., 

2001; Kharlamov et al. 2003; Kelly et al., 2006). Furthermore, in the present study, those 

epileptic rats, both after ET-induced MCAo and photothrombosis, did not exhibit the largest 

lesions in their study groups.  
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In humans, certain brain regions are often associated with seizures after stroke, e.g., the 

cerebral cortex (Bladin et al., 2000; Dhanuka et al., 2001; Lossius et al., 2002). The location 

of the lesion seems to play an important role also in epileptogenesis after experimental stroke. 

Previously, it was reported that the occurrence of seizures is most frequent in rats with 

photothrombotic lesions either in the midfrontal (1.2 mm rostral and 1.8 mm lateral to the 

bregma) or the frontoparietal cortex (1.8 mm caudal and 2.2 mm lateral; Kelly et al., 2001). In 

the present study, photothrombosis induced epilepsy in 7 rats of 36 when the lesion center 

was focused at a site located above the hippocampus (1.8 mm posterior and 2.2 mm lateral). 

The effect of lesion location on epileptogenesis after the photothrombosis was investigated by 

preparing one group of rats with lateral coordinates (0.5 mm anterior and 3.7 mm lateral). No 

electrographic seizures were observed in the six rats with lateral coordinates during 14 days of 

continuous EEG-recordings at 8 and 10 months after photothrombosis. These present and 

previous findings suggest that the location of the lesion might play a role in the development 

of epilepsy after the focal cerebral ischemia (Kelly et al., 2001). 

The depth of the cortical photothrombotic lesion has been linked to the extent and grade 

of reduced inhibition. Electrophysiological recordings suggest that if the lesion affects cortical 

layers that extend to the subcortical white matter, then ipsi- and contralateral depression may 

be observed, instead of a slight ipsilateral change followed by a shallower lesion 

(Buchkremer-Ratzmann and Witte, 1997). Consistently, shallower and smaller lesions were 

less effective in inducing epilepsy after cortical photothrombosis in aged rats (Kelly et al., 

2001). In the present study, however, the lesion depth in epileptic animals varied from a 

shallow layer I lesion to a deep layer VI lesion.      

 

6.2.3 Behavioral recovery  

In humans, early seizure occurrence may be related to a better outcome of the stroke 

survivors (Reith et al., 1997), whereas late seizures may be followed by transient or 

permanent worsening of the neurological deficit (Bogousslavsky et al., 1992; Lamy et al., 

2003; Vespa et al., 2003; De Reuck et al., 2006a). Similarly, faster recovery is associated with 

the occurrence of rare stimulated seizures after the brain lesion in animals (Feeney et al., 

1987; Hernandez and Schallert, 1988), whereas recovery might be hindered following the 

appearance of seizures from 2 to 6 days after the brain insult (Hernandez and Warner, 1995). 

In the present study, no association was found between early seizures or spiking activity and 
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the behavioral results following ET-induced MCA occlusion. Unfortunately, the behavioral 

data could not be compared between rats with and without late seizures due to the low number 

of rats developing seizures. Because the number of rats in the groups was low, more studies 

will be needed to investigate the association between behavioral recovery and seizures after 

focal cerebral ischemia.  

 

6.3 Comparison between photothrombosis and other models of spontaneous seizures 

 In the present study, the highest number, i.e. 18% of the rats, had seizures after 

photothrombosis. In contrast, the number of rats developing seizures is significantly higher in 

other models of spontaneous seizures: 43-50% after the lateral fluid percussion (Kharatishvili 

et al., 2006), 45-59% after kainate injection (Stafstrom et al., 1992; Mascott et al., 1994), 88-

91% after electrically stimulated status epilepticus (Bertram and Cornett, 1993; Nissinen et 

al., 2000), and 90-100% after pilocarpine injections (Priel et al., 1996).  

 

6.3.1 Electrophysiological findings 

In the present study, the first seizure was observed at 71 d after the cortical 

photothrombosis. It is important to state that video-EEG monitoring was started 2 months 

after experimental stroke. Continuous video-EEG study is, however, needed to assess the 

duration of post-stroke epileptogenesis accurately. In the ET model, the epileptogenesis phase 

seems to be more prolonged than in the photothrombosis model, because the first late seizure 

was recorded 6 months after the ischemia induction. In the individual animals, the latency 

period varied from 10 weeks to over 10 months. This is consistent with the model of 

traumatic brain injury, where the latency period can vary from 7 weeks to 1 year 

(Kharatishvili et al., 2006). In contrast, the first spontaneous seizures occur consistently about 

at 1 month following chemical or electrical status epilepticus induction (Cavalheiro et al., 

1991; Bertram and Cornett, 1993; Nissinen et al., 2000; Stafstrom et al., 1992). In these 

models, the longest latency period has ranged from 30 to more than 80 days (Stafstrom et al., 

1992; Bertram and Cornett, 1993; Cavalheiro et al., 1991; Nissinen et al., 2000), which is 

clearly shorter than the 10 months found in the present study. 

 In this study, the seizure frequency was 0.21 seizures per recording day for the single 

epileptic rat that exhibited seizures after ET-induced MCAo. Following cortical 

photothrombosis, the mean seizure frequency was 0.39 seizures per recording day. In 
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chemical and electrical stimulation models of spontaneous seizures, the seizure frequency can 

be significantly higher (Cavalheiro et al., 1991; Mello et al., 1993). For example, one rat was 

reported to experience over 120 spontaneous seizures during one day after the status 

epilepticus with electrical stimulation of the amygdala (Nissinen et al., 2000).  

 

6.3.2 Learning and memory impairments after seizures 

Previous experimental studies have indicated that both brief and prolonged seizures can 

alter the learning and memory functions of the animals. The stimulation of even a few 

seizures in the dorsal hippocampus can disrupt the performance in the Morris water maze as 

assessed by direct swims to the hidden platform (Hanneson et al., 2004). When rats are 

kindled twice daily in the dorsal hippocampus until three fully generalized seizures are 

evoked, the animals require more time to escape to the platform and use less direct routes 

(Hannesson et al., 2001). It has been suggested that this is a reflection of disruption of spatial 

learning and/or short-term memory (Hannesson et al., 2001). Seizures have also been reported 

to disrupt learning and memorizing the place of the platform in different status epilepticus 

models (Halonen et al., 2001a; Halonen et al., 2001b; Mohajeri et al., 2003). In addition, 

emotional learning and memory, as assessed by the fear conditioning test, is claimed to be 

disrupted by seizures (Szyndler et al., 2002; Kemppainen et al., 2006). Unfortunately, the 

effect of seizures on the spatial and emotional learning and memory after focal cerebral 

ischemia will need to be investigated in future studies, because the number of rats in the 

groups was too low in the present study to draw any meaningful conclusions. 

 

6.4 Histological findings 

6.4.1 Hippocampal cell damage 

 In addition to the lesion, cell loss and gliosis may be observed in the hippocampus of 

stroke patients (Leverenz et al., 2002). Previously, it was shown that global cerebral ischemia 

can induce loss of GABAergic interneurons and terminals with a concomitant increase in the 

glutamatergic terminals in the CA3 region of the hippocampus after 2 months (Epsztein et al., 

2006). These changes were associated with spontaneous interictal epileptiform discharges, a 

reduction in the frequency of inhibitory postsynaptic potentials and an increase in the 

frequency of glutamatergic postsynaptic currents in the CA3 region (Epsztein et al., 2006). 

Further, a positive correlation exists between seizure activity and the severity of the 
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hippocampal lesion 3 months after the intrahippocampal injection of ET in 12 or 25-day-old 

rat pups (Mateffyova et al., 2006). In contrast, following cortical photothrombosis, the 

hippocampus seems to be spared from injury as shown by Nissl and Fluoro-Jade-B stainings 

and glutamic acid decarboxylase-65/67 mRNA labeling (Frahm et al., 2004; Kharlamov et al., 

2007). In the present experiment, no estimation of the cell loss was performed after the 

intraluminal filament model of MCAo. Following ET-induced MCA occlusion, the severity of 

neuronal damage was estimated in the granule cell layer, hilus, CA3 and CA1 regions. The 

results indicated that ET-induced MCAo had not induced any major cell loss in the 

hippocampus. The semiquantitative method used, however, may not be sensitive enough to 

detect subtle differences between ischemic and control rats. Following photothrombosis, 

stereological techniques were utilized to count the number of the hilar neurons. No difference 

was found in the hilar cell number between the rats with photothrombosis and control 

treatment.  

 This study also aimed to explore whether the occurrence of late seizures was associated 

with neuronal damage in the hippocampus. Epilepsy-associated hippocampal sclerosis has 

been reported to be characterized by selective damage to target cells of the mossy fibers in the 

hilus and CA3, where as CA2 and the dentate gyrus are better preserved (Mathern et al., 

2002). Hippocampal sclerosis is observed in association with seizures both in humans and 

animals (Cavazos et al., 1994; Buckmaster and Dudek, 1997; Mathern et al., 1997; Proper et 

al., 2000; Mathern et al., 2002). However, there is variation in the epilepsy-associated 

hippocampal damage, because there are patients with lesion-associated epilepsy who exhibit 

no significant neuropathological changes in the hippocampus (Blumcke et al., 2000). In the 

present experiment, the severity of the neuronal damage in the hippocampus could not be 

compared between epileptic and non-epileptic rats after ET-induced MCAo because only one 

rat developed epilepsy. Following photothrombosis, the number of neurons in the hilus did 

not differ between those rats with and those without seizures.  

 

6.4.2 Aberrant mossy fiber sprouting 

In the present study, the three focal cerebral ischemia models did not induce observable 

increase in the mossy fiber sprouting in rats without epileptic seizures when scoring was 

performed from Timm’s-stained sections. In contrast to focal cerebral ischemia models, 

global cerebral ischemia does induce 30-50% loss of CA3 pyramidal cells and 67% of the rats 
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demonstrate supragranular mossy fiber sprouting in the dentate gyrus after 100 d (Onodera et 

al., 1990). Age can also have an effect on mossy fiber sprouting since Timm’s staining can be 

found in the supragranular layer of older people (Cassell and Brown, 1984). In the present 

experiments, the study design in the ET model allowed observations from two groups of 

different aged rats. In agreement with human data, the mossy fiber sprouting was slightly 

denser in the older 12-months old rats when compared to younger 6-months old rats after ET-

induced MCAo.  

One aim was to investigate whether aberrant sprouting of granule cell axons would 

associate with the occurrence of late seizures after focal cerebral ischemia. As shown 

previously, both dendrites and axons can undergo changes during epileptogenesis 

(Buckmaster and Dudek, 1997; El Bahh et al., 1999; Ribak et al., 2000; Kato et al., 2001). In 

the global cerebral ischemia model, structural alterations in the dendrites of CA3 pyramidal 

cells have been associated with the occurrence of convulsions (Semchenko et al., 2001). In 

the dentate gyrus, the reorganization of granule cell axons, i.e. mossy fiber sprouting, has 

been detected in both epileptic humans and animals (Cavazos et al., 1991; Buckmaster and 

Dudek, 1997; El Bahh et al., 1999; Nissinen et al., 2001; Kharatishvili et al., 2006). 

Previously, it has been shown that the severity of the cell loss in the hilus associates with the 

aberrant sprouting of mossy fibers (Buckmaster and Dudek, 1997; El Bahh et al., 1999) and 

that the frequency of spontaneous seizures can correlate positively with mossy fiber sprouting 

(Mathern et al., 1997). Since there was no difference in the hippocampal cell damage between 

epileptic and non-epileptic animals and the seizure frequency was low, it was anticipated that 

there would be only a mild increase in the mossy fiber scores of epileptic animals. After ET-

induced MCAo, no aberrant mossy fiber sprouting was detected in the rat with late seizures. 

In contrast, after cortical photothrombosis seizures occurrence was associated with a slightly 

denser bilateral sprouting of mossy fibers. In summary, the results of the mossy fiber 

sprouting assessment after the cortical photothrombosis indicate that the epileptogenesis, in 

addition to the evoking lesion might also evoke changes in distant brain structures. 

 

6.5 Cerebral changes affecting excitability after focal cerebral ischemia 

 Previous studies indicate that the inhibitory interneuron survival and receptor 

expressions around the lesion site may be different between the large artery occlusion models 

and cortical photothrombosis (Luhmann et al., 1995; Schiene et al., 1996; Neumann-Haefelin 
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et al., 1998; Que et al., 1999b; Jolkkonen et al., 2003; Sommer et al., 2003). This may lead to 

only a moderate and transient decrease in the inhibition adjacent to the lesion following large 

artery occlusions, whereas after the cortical photothrombosis, a markedly decreased level of 

inhibition is observed (Neumann-Haefelin and Witte, 2000; Witte and Freund, 1999). In 

addition, excitability might be affected by the loss of control from the damaged structures to 

the area of interest (von Giesen et al., 1994; Classen et al., 1997). Experimental results also 

indicate that contralateral frontoparietal infarct can have an inhibitory influence on the 

seizures originating from the amygdala (Schwartz et al., 1983).  

Several changes have been related to the enhanced excitability in the cortex following 

the photothrombosis. First, the neurons may be more likely to generate action potentials due 

to a less negative membrane potential (Witte and Freund, 1999). Second, the decreased 

GABA-mediated inhibition may result from a decreased number of interneurons, alterations 

in the GABA receptor expression or changes in the GABA receptor subunit composition 

(Schiene et al., 1996; Neumann-Haefelin et al., 1998; Neumann-Haefelin et al., 1999; Que et 

al., 1999b; Liu et al., 2002; Frahm et al., 2004). Third, changes in NMDA receptor 

expressions may contribute to the hyperexcitability after cortical photothrombosis 

(Buchkremer-Ratzmann et al., 1998; Mittmann et al., 1998; Kim and Todd, 1999; Que et al., 

1999a). Fourth, glial cells accumulate at the lesion border after focal cerebral ischemia and 

can affect brain excitability, for example, by modulating the extracellular ion balances or by 

secreting signaling molecules (Watson et al., 1985; White et al., 1986; Bidmon et al., 1997; 

Fedele et al., 2005). In addition, although hippocampal neurons seem to survive after the 

photothrombosis, their function and activities might be altered (Diehm et al., 2003; Frahm et 

al., 2004; Kharlamov et al., 2007). Enhanced neurogenesis is also observed in the subgranular 

zone of the dentate gyrus after photothrombosis and the newly born cells might play a role in 

epileptogenesis after focal cerebral ischemia (Parent et al., 1997; Kluska et al., 2005). 

Although both structural and functional modifications have been associated with excitability 

changes after the cortical photothrombosis, their role in epileptogenesis after focal cerebral 

ischemia still needs to be elucidated.  
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6.6 Future perspectives 

The results from previous and these present studies suggest that the photothrombosis 

model produces a higher percentage of the rats developing epilepsy compared to that obtained 

with the large artery occlusion models (Kelly et al., 2001; Kharlamov et al., 2003; Kelly et al., 

2006). The cortical photothrombosis model also incorporates features of secondary 

epileptogenesis (Dudek and Spitz, 1997). A latency time of 10 weeks to over 10 months was 

observed between the induction of cortical photothrombosis and the occurrence of 

spontaneous seizures (Kharlamov et al., 2003). In addition, cortical photothrombosis was 

associated with changes not only in the lesion site but also in distant areas. In the present 

study, the axonal sprouting, i.e. mossy fiber sprouting, was slightly increased in the dentate 

gyrus of the hippocampus of those epileptic rats obtained with the photothrombosis model. 

Previous studies also imply that the function of neurons in the ipsilateral hippocampus might 

be altered after photothrombosis (Diehm et al., 2003; Kharlamov et al., 2007).  

However, further studies are needed to investigate the validity of the photothrombosis 

model as a tool to study epileptogenesis after stroke. The possible toxicity of the Rose Bengal 

dye and its effects on the seizure occurrence after cortical photothrombosis needs to be 

investigated. The reproducibility of epileptogenesis after cortical photothrombosis needs to be 

tested. It also remains to be investigated whether seizures respond to AED treatment. In 

addition, future studies will need to strive to elucidate the causes and consequences of 

epilepsy after focal cerebral ischemia and how they correspond to human post-stroke 

epilepsy.  

Compared to other models of spontaneous seizures, focal cerebral ischemia models 

induce a lower number of epileptic rats with a low seizure frequency and with a variable 

latency time between the onset of ischemia and the occurrence of late seizures. All of these 

variations will limit the usefulness of focal cerebral ischemia models in the development of 

new AEDs. Focal cerebral ischemia models, especially photothrombosis, however, may be 

applied in basic research when investigating the underlying mechanisms of epileptogenesis 

during the time course from the initial injury to the process of epileptogenesis, and to the 

occurrence of spontaneous, recurrent seizures. 
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7 SUMMARY AND CONCLUSIONS  
 

 The aim was to investigate the occurrence of post-stroke epilepsy in rats using three 

models: the transient intraluminal filament model of MCAo (I, IV), ET-induced MCAo (II, 

IV), and the cortical photothrombosis with Rose Bengal (III, IV). The main findings are 

summarized as follows: 
 

(1) Differences in the development of epilepsy between models. No electrographic seizures 

were observed in the rats with the filament model of MCAo.  After ET-induced MCAo, 

however, one rat out of 26, and after the photothrombosis 7 rats out of 36, did develop 

seizures. Thus, the percentage of rats with epilepsy seems to vary between the stroke 

models. Taken together, previous and these present studies indicate that the location of the 

lesion, rather than the size, seems to play a role in determining whether epileptogenesis 

will occur after experimental focal cerebral ischemia.  
 

(2) Seizure characteristics. The latency time from focal cerebral ischemia to the first late 

seizure varied from 10  weeks to over 10 months and the mean seizure frequency from 

0.21 to 0.39 per recording days in the ET- and photothrombosis model, respectively. The 

mean seizure duration was about 2 minutes. Behaviorally, these seizures manifested as 

secondarily generalized. 
  

(3) Histology. After ET-induced MCAo, the single epileptic rat did not exhibit aberrant 

mossy fiber sprouting in the dentate gyrus. After photothrombosis, the hippocampal hilar 

cell number did not differ between the rats with and without seizures, but the occurrence 

of seizures was associated with a slightly denser bilateral mossy fiber sprouting.  
 

(4) Behavior. The occurrence of early seizures or increased spiking activity after ET-induced 

MCAo did not associate with poor performance in the behavioral tests.  
 

 In conclusion, post-stroke epilepsy seems to be difficult to reproduce in rat focal 

cerebral ischemia models. Of the three investigated stroke models, cortical photothrombosis 

with Rose Bengal dye in adult Sprague-Dawley rats might be suitable for studies of 

epileptogenesis after small cortical thrombotic vessel occlusion.  
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