

6 SINTE

Comparison of the Norwegian standard NS3058/59 and EN16510 with EN-PME

Franziska Kausch





# Focusing both on PM measurement method and test procedure and resulting suggestions for improved test procedure in EN16510.

- Overview
  - Background
  - 1. comparison EN-PME with dilution tunnel method
  - 2. EN16510 with dilution tunnel method and adaption of NS 3058 test procedure
  - Suggestion for an amendment in EN16510 CEN TC 295



- Norway was one of the few countries in Europe with a national standard on PM emissions since 1998 with the Norwegian standard NS3058/59
- CEN TC 295 ongoing work with a harmonized standard EN16510 including one PM measurement method EN-PME
- In 2022 Ecodesign directive set stricter requirements on local space heaters fired with solid fuels with 3 thresholds for PM in accordance to the 3 measurement methods, Heated Filter, FFDT (NS3058), British Electrostatic precipitator
- Does the EN-PME measurement method satisfies the Norwegian environmental protection level?



4

## NS 3058/59 vs EN 16510 EN-PME

|                    | TEST METHOD                                     |                                                  |  |  |  |  |
|--------------------|-------------------------------------------------|--------------------------------------------------|--|--|--|--|
|                    | EN 16510-1 EN-PME                               | NS 3058-1/2:1994 and NS3059:1994                 |  |  |  |  |
| Measured PM        | Chimney                                         | Isokinetic with a FFDT                           |  |  |  |  |
| Particles          | Solid                                           | Solid + condensable                              |  |  |  |  |
| Draft              | 12 Pa forced                                    | Natural draft                                    |  |  |  |  |
| Moisture           | 16 ± 4 %                                        | 16-20 %                                          |  |  |  |  |
| Fuel               | Beech wood log                                  | Spruce boards                                    |  |  |  |  |
| Fuel load          | Acc. to manufacture                             | 112 ± 11 kg/m <sup>3</sup> of the firebox volume |  |  |  |  |
| Filter temp.       | 180°C                                           | Max. 35 °C                                       |  |  |  |  |
| Tested heat output | Nominal heat output (specified by manufacturer) | 4 burn rate categories, low -> max               |  |  |  |  |





Testing at 4 burn rates (heat outputs) reflect real life use

|    | < 1,25 kg/h | 1,25 - 1,90 kg/h | 1,91 - 2,80 kg/h | > 2,80 kg/h |
|----|-------------|------------------|------------------|-------------|
| kW | < 5         | 5 – 7,6          | 7,6 – 11,2       | > 11,2      |





Figure 1: PM emission measured with NS3058 parallell with EN-PME and EN16510 with EN-PME (right)

- All measurements for NS 3058 were below 5 g/kg
- All 5 stoves meet the requirements for the EN-PME method for at least one heat output

 $\rightarrow$  stoves developed and designed to meet certain test requirements will meet them under type approval





Figure 2: PM NS3058 vs PM EN-PME (left) and PM NS3058 vs OGC (right)

• Low OGC can still result in increased PM when measured with FFDT

Comparison of test method EN 16510-1:2018 with EN-PME test method vs NS 3058-1/2:1994 and NS 3059:1994; Kausch, F.; Seljeskog, M.; Østnor, A.; 2021

Technology for a better society



7

## NS 3058/59 vs EN 16510 EN-PME

|                    | TEST METHOD                                     |                                                  |         |  |
|--------------------|-------------------------------------------------|--------------------------------------------------|---------|--|
|                    | EN 16510-1 EN-PME                               | NS 3058-1/2:1994 and NS3059:1994                 |         |  |
| Measured PM        | Chimney                                         | Isokinetic with a FFDT                           | φ=200 i |  |
| Particles          | Solid                                           | Solid + condensable                              |         |  |
| Draft              | 12 Pa forced                                    | Natural draft                                    |         |  |
| Moisture           | 16 ± 4 %                                        | 16-20 %                                          |         |  |
| Fuel               | Beech wood log                                  | Spruce boards                                    |         |  |
| Fuel load          | Acc. to manufacture                             | 112 ± 11 kg/m <sup>3</sup> of the firebox volume |         |  |
| Filter temp.       | 180°C                                           | Max. 35 °C                                       |         |  |
| Tested heat output | Nominal heat output (specified by manufacturer) | 4 burn rate categories, low -> max               | ]       |  |

Testing at 4 burn rates (heat outputs) reflect real life use

|    | < 1,25 kg/h | 1,25 - 1,90 kg/h | 1,91 - 2,80 kg/h | > 2,80 kg/h |
|----|-------------|------------------|------------------|-------------|
| kW | < 5         | 5 – 7,6          | 7,6 – 11,2       | > 11,2      |

φ=200 mm FFDT p (draught) - T CO<sub>2</sub>/CO/O<sub>2</sub> FID 4 mm SCALE



# Comparison of the test procedure of both methods with different fuel and heat outputs

- 2 wood stoves with different design
- 3 heat outputs part, nom, high
- 3 test fuels load
- Each condition tested 3 times

| fuel load<br>[kg] | EN16510 | NS3058 | Assumed part<br>load EN16510 |
|-------------------|---------|--------|------------------------------|
| Stove 1           | 1,3     | 2      | 1                            |
| Stove 2           | 1,3     | 1,5    | 1                            |



Performances declared by the manufacturer after type test

|         | Combustion chamber volume [dm <sup>3</sup> ] | Fuel declared by<br>manufacturer [kg] | PM<br>[mg/m3] | OGC<br>[mg/m3] | Heat output<br>[kW] |
|---------|----------------------------------------------|---------------------------------------|---------------|----------------|---------------------|
|         |                                              |                                       | Туј           | pe test EN1    | 3240                |
| Stove 1 | 19,8                                         | 1,3                                   | 17            | 68             | 5,9                 |
| Stove 2 | 14,8                                         | 1,3                                   | 21            | 29             | 6,2                 |













Comparison of test method EN 16510-1:2018 with EN-PME test method vs NS 3058-1/2:1994 and NS 3059:1994; Kausch, F.; Seljeskog, M.; Østnor, A.; 2021









■ OGC , mg/Nm3

→ Small combustion chamber ensure overall better performance with lower OGC values and lower PM when measured with FFDT

288

high



- Does the EN-PME measurement method satisfies the Norwegian environmental protection level? – NO!
- Stoves in Norway are developed to perform fairly well at several heat outputs
- Important that stoves a designed to emit little emissions under a range of operation condition not just one optimized condition
- A standard needs to test several heat outputs



# Ongoing work in TC 295 on an amendment for an overload test (high heat output test)

#### CEN/TC 295 - RESIDENTIAL SOLID FUEL BURNING APPLIANCES

Working groups:

- WG1: Appliances fired by solid fuels
- WG2: Appliances fired by pellets
- WG3: Heat storage stoves (SHRA) and sauna stoves
- WG4: Tiled Stoves
- WG5: Measurement methods
- WG6: CPR and mandates (CPR: Construction product regulation)

- In 2021 WG1 group agreed to work on a overload test
- A subgroup was formed to work on several task including to identify the expected use of a wood stove and to define a overload test and propose a text for an amendment
- Subgroup with experts from Italy, France, Germany, Finland
  - Overload: assumed intended use (not worst case scenario)
- The draft was presented to WG1 in September this year



- EN13240/16510: manufacture defines the wood load
- EN test with relatively little fuel load



9 kW appliances

- 0,7 m wide
- Nominal fuel amount 2 kg



- 1 m wide
- Nominal fuel amount 2 kg

 $\rightarrow$  It can be expected that both stoves will be used with more wood than 2 kg during colder period because of the large combustion chambers.



#### • Overload test

- 150 % of the nominal fuel load and 14 Pa (at least 2 Pa over nom)

| kW                 | 5   | 6   | 7   | 8   | 9   |
|--------------------|-----|-----|-----|-----|-----|
| fuel load nom kg   | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
| 150 % high load kg | 1.6 | 1.9 | 2.2 | 2.5 | 2.8 |
| Part load kW       | 4   | 4.4 | 4.8 | 5.2 | 5.6 |

# Proposed amendment for an Overload test in EN16510

#### A.4.9 Overload test

This test is required for all appliances, where an overload heat output is specified. If appropriate, consider the relevant Part 2 for the specific type of appliance.

The overload test is carried out the same way as the nominal heat output test (A.4.7) with the following modifications:

- One batch following either the nominal heat output test or the part load test
- The flue draught is set to pover or the value for the overload test as specified with a minimum of 14 Pa (or at least 2 Pa over the draft in the nominal test)
- The fuel mass for overload test is used as specified with a minimum of 150% of the nominal test fuel load.
- All adjustments and air controls are set to overload test setting as specified, with settings as specified during nominal heat output test settings or more.



### Recent results for overload and part load heat output for a 6 kW stove

• Average of 3 test

|                  | CO<br>mg/m3<br>at 13% | OGC<br>mg/nm3<br>at 13% |     |         |    |
|------------------|-----------------------|-------------------------|-----|---------|----|
| 6 kW stove       | 02                    | 02                      | kW  | T EN °C | %  |
| 1,2 kg nominal   |                       |                         |     |         |    |
| load             | 1097                  | 114                     | 6,4 | 262     | 73 |
| 1,8kg high load  | 2056                  | 101                     | 8,5 | 291     | 8  |
| 0,6 kg part load | 1745                  | 156                     | 4,2 | 186     | 84 |

# OGC at 13% O2 mg/nm3• OGC mg/nm31141011,2 kg nominal load1,8 kg high load0,6 kg part load





- CEN TC 295 awaits harmonization of EN16510
- WG1 ask for more data
- Next WG1 meeting 2023-02-02



# **Suggestion to CEN TC** 295 WG1 **Quick user guide**

- Require to include a quick user guide in the manual
- Self-explaining picture/drawings for ignition, amount of fuel, air settings!
- Suggestion:
  - 1-2 side without text
  - 1-2 side with additional written description

- 1. Preparation & Ignition
- Clean and open the grate and empty the ash box
- Crosswise placement of four firewood pieces (2 layers) on top of shavings(3 layers) on the grate (Bottom-up ignition) (Fig. 1 & Fig. 2)
  - Length of firewood: 25 cm
- Use only dry and natural firewood at least 1 year stored
- 3 layers shavings, crosswise placed total: 0.6 kg
- 1. layer 2 firewood pieces, each 0.35 kg
- 2. layer 2 firewood pieces, each 0.35 kg
- Whole mass of the ignition batch has to be 2.0 kg (Fig. 1)
- Air inlet flap settings for ignition:
  - Bypass foamed ceramic: fully open "A" (Fig. 3)
- Primary air supply: fully open "Max" (Fig. 4)
- Secondary air: fully open "Max"(Fig 5)
- Lighting of starting aid (placed on the grate) (Fig. 2)
- Closing of combustion chamber door
- 2. Recharging
- Recharge when flames are extinguishing or when no flames visible, but enough firebed is available
- After the 1<sup>st</sup> batch: (Fig. 5)
  - Firewood: 2 pieces, each 1.0 kg, Total mass 2.0 kg
- After the 5<sup>th</sup> batch: (Fig. 6)
- Firewood: 1 piece, Total mass 1.0 kg
- Placement according to Fig. 6 only parallel to the window
- Air inlet flap settings:
- Bypass foamed ceramic: closed "Z" (Fig. 7)
- Primary air supply: reduced to Min (Fig. 8)
- Secondary air: reduced to 50 % (Fig 9)

#### 3. Finishing heating operation

- When flames are extinguished and when the firebed is not glowing any more (Fig. 7)
  - Close air inlet flaps (Fig. 8) for avoidance of heat losses
- Primary air supply: closed "Min" (Fig. 8)
- Secondary air: closed "Min" (Fig 9)

#### Example: BeReal project







Figure 4



Figure 5



# Technology for a better society