

Correlation of PM2,5 with other emission components based on SIMO database

26.10.2023 2nd Real-LIFE-emissions Workshop, Straubing, Germany Juho Louhisalmi UEF

SIMO - Residential Wood Combustion Simulator

- Research unit built in two sea containers
- Designed to study emissions from fireplaces and stoves in near real-life conditions
- Well equpped with scientific instruments for emission measurements
 - Automated data collection and processing
- The data is collected to SIMO emission database

More in detail: Tissari et. al. 2019. Fine Particle Emissions from Sauna Stoves: Effects of Combustion Appliance and Fuel, and Implications for the Finnish Emission Inventory

PTD+ED used as PM measurement method

- A combination of porous tube diluter (PTD) with ejector diluter (ED)
 - Dilution ratio (DR) 90
 - Filter collection temperature about 20-30 $^{\circ}$ C
 - Condensable fraction is mainly in particulate phase
 - Partciles larger than 2,5 μ m were removed with an impactor

UEF// University of Eastern Finland

General information of the database

- 352 combustion experiments
 - Average values from whole combustion and each batch
- 50 different appliances
 - Sauna stoves, wood stoves, masonry heaters and kitchen ranges
 - Mainly new and modern appliances
 - Birch wood logs used as fuel
- Results calculated to 20 °C, 1 ATM and 13 % O₂

Content

- Organic carbon (OC) and elemental carbon (EC) vs. PM2,5
- OC vs. OGC (FID)
- Number concentration (CPC) vs. PM2,5
- PM2,5 vs. CO, OGC and NO

PM2,5 vs. OC and EC

PM2,5 vs. OC and EC

OC vs. OGC

PM2,5 vs. Number concentration, CPC

PM and basic gas components

UEF// University of Eastern Finland

Conclusion

- Particulate organic matter is important also with new residential wood combustion appliances
 - Measurement technologies should be able to detect organic particulate emissions
- Number concentration doesn't correlate with PM2,5 concentration
 - Can't be decreased with traditional combustion technologies
 - Electrostatic precipitators can be used for that
- Different emissions may correlate with high emission levels (old appliances) but with todays relevant emission levels they do not correlate
 - \rightarrow It is important to measure gas and particulate emissions separately

Thank you

Juho Louhisalmi University of Eastern Finland Department of Environmental and Biological Sciences Fine Particle and Aerosol Technology Laboratory juho.louhisalmi@uef.fi

References

- Tissari, J., Väätäinen, S., Leskinen, J., Savolahti, M., Lamberg, H., Kortelainen, M., Karvosenoja, N., Sippula, O. 2019. Fine Particle Emissions from Sauna Stoves: Effects of Combustion Appliance and Fuel, and Implications for the Finnish Emission Inventory. Atmosphere, 10(12), 775. https://www.mdpi.com/2073-4433/10/12/775
- https://sites.uef.fi/fine/front-page/research-areas/combustion-facilities/dilution-andsampling/