

The effect of dilution ratio and wood species on particulate emissions

Henna Rinta-Kiikka 2nd INTERNATIONAL REAL-LIFE EMISSIONS WORKSHOP ON SMALL-SCALE COMBUSTION 26.10.2023

UEF// University of Eastern Finland

Contents

- Introduction
- Objectives
- Methods
 - Small-scale combustion simulator
 - Experiments
 - Dilution system
 - Measurements
- Results and discussion
 - The effect of dilution ratio
 - The effect of wood species
- Summary

UEF// University of Eastern Finland

Introduction

<u>Dilution</u>

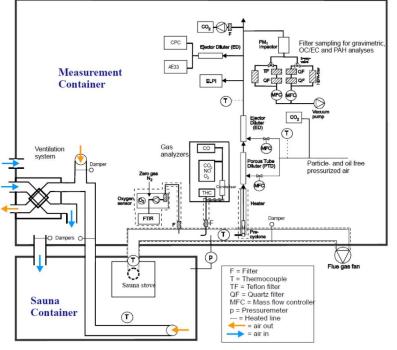
- Dilutive sampling methods model the dilution of the sample in the atmosphere
- Can affect on the particle concentrations (gas-particle partitioning)
- The effect has not been studied broadly

Wood species

- Various types of wood species are combusted
- Dissimilar concentrations of PM emissions

3

 Impacts on emission inventories


Objectives

- To examine the effects of different flue gas dilution ratios (DR) on the particulate emissions
 - Comparing of results between different DRs with pine wood
- To observe the extent of particulate emission concentrations from the combustion of different wood species
 - Normal moisture: Pine, BirchA, BirchB, Alder and Spruce (moisture content between 16-18 %)
 - Dry wood: Beech, Spruce and BirchA (moisture content between 6-7 %)
- Identify the better wood species options

Small-scale combustion simulator (SIMO)

https://sites.uef.fi/fine/front-page/simo/

Tissari, J. et al. Fine Particle Emissions from Sauna Stoves: Effects of Combustion Appliance and Fuel, and Implications for the Finnish Emission Inventory. *Atmosphere* 2019, *10*, 775. https://doi.org/10.3390/atmos10120775

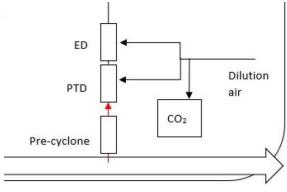
UEF// University of Eastern Finland

1.10.2023

Henna Rinta-Kiikka, 2nd INTERNATIONAL REAL-LIFE EMISSIONS WORKSHOP ON SMALL-SCALE COMBUSTION

Experiments

- Combustion appliance
 - Elliptical shaped soapstone covered stove with baking oven
- Experiments were performed with same protocol
 - Six batches
 - BirchA logs in first batch in all tests
 - DR experiments with pine wood
 - Wood specie experiments with DR = 90



UEF// University of Eastern Finland

Henna Rinta-Kiikka, 2nd INTERNATION WORKSHOP ON SMA

Dilution system

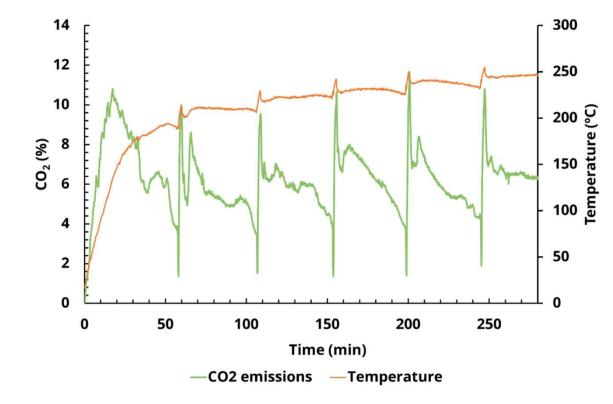
Flue gas fan

7

- Two-phase dilution system for particle measurements (combination of porous tube diluter (PTD) and ejector diluter (ED))
 - 10 µm pre-cyclone
 - PTD minimizes the losses and transformation of the particles and water vapor condensation
 - ED stabilizes the sample flow
- Additional ED for the most sensitive instruments
- DR was calculated from the measured CO₂ concentrations
 - Raw gas, background air and diluted gas

UEF// University of Eastern Finland

Measurements


- Gas analyses
 - THC, CO, CO₂, NO (gas analyzer), VOCs (FTIR)
- Real-time particle measurement and analyses
 - Particle number concentration (CPC), mass concentration and numbers size distribution (ELPI), Black carbon mass concentration (aethalometer), human lung-deposited surface area of particles (NSAM)
- Filter sampling from each batch
 - OC/EC analysis (thermal-optical carbon analyzer)
 - Analysis of 30 PAH compounds (gas chromatograph mass spectrometer)

UEF// University of Eastern Finland

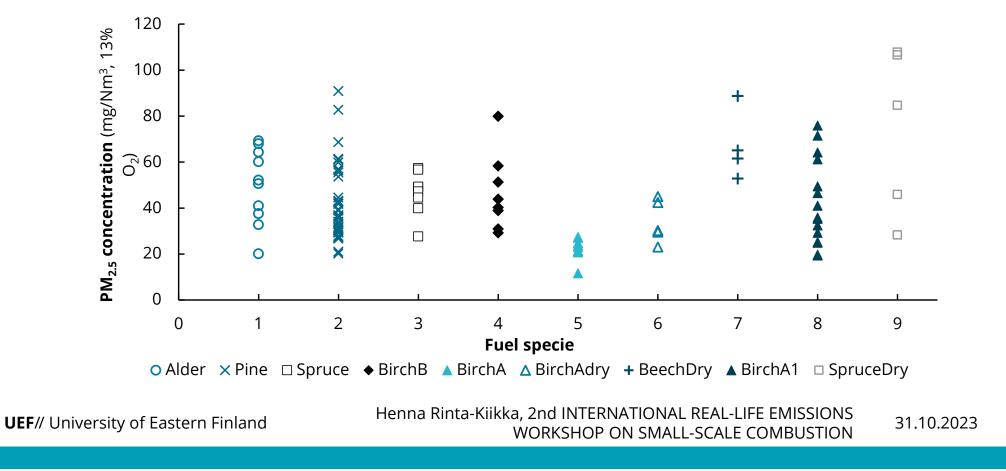
The effect of dilution ratio

- CO₂ levels of first and second batch differed from other batches
- Flue gas temperature increased considerably during first and second batch
- → batches 3-6 were considered when comparing results

UEF// University of Eastern Finland

Henna Rinta-Kiikka, 2nd INTERNATIONAL REAL-LIFE EMISSIONS WORKSHOP ON SMALL-SCALE COMBUSTION 31.10.2023

Effect of DR on particulate emissions (Batches 3-6, N=4-8/DR)


Mean and standard deviation of particle concentrations ($PM_{2.5}$, OC and EC) by DR. Particle concentrations are normalized to 20 °C, 1 atm and 13 % O_2 .

DR	PM _{2.5} (mg/Nm ³)	OC (mg/Nm ³)	EC (mg/Nm ³)
9,3±2,0	41,0±11,3	8,9 ±5,4	25,1±13,4
20,1±0,1	45,3±10,7	7,2±2,7	36,1±10,4
40,0±0,1	31,2±1,5	6,3±2,3	20,0±3,7
89,8±0,0	32,2±10,5	6,7±3,7	22,0±8,7
512,4±48,4	46,3±13,3	7,4±2,0	25,7±3,5

UEF// University of Eastern Finland

PM_{2.5} concentration in each batch

Summary

<u>Dilution</u>

- No clear correlation between DR and PM_{2.5}
 - Most of the differences are due to combustion conditions
- DR is not such an important factor for the modern appliances (when the EC dominate particulate mass)

Wood species

- Different fuel species produced different emissions
- Even same specie (e.g. BirchA and BirchB) differ
- Making combustion the same with different fuels is complicated → difficult to compare
- Also, the literature results of different fuels conflict from study to study
- What kind of strategy with wood species would be the best in official testing of appliances?

Thank you!

uef.fi

UEF// University of Eastern Finland

Henna Rinta-Kiikka, 2nd INTERNATIONAL REAL-LIFE EMISSIONS WORKSHOP ON SMALL-SCALE COMBUSTION 31.10.2023